
University of Pittsburgh School of Law University of Pittsburgh School of Law

Scholarship@PITT LAW Scholarship@PITT LAW

Articles Faculty Publications

2006

IP's Problem Child: Shifting the Paradigms for Software Protection IP's Problem Child: Shifting the Paradigms for Software Protection

Jacqueline D. Lipton
University of PIttsburgh School of Law, jdl103@pitt.edu

Follow this and additional works at: https://scholarship.law.pitt.edu/fac_articles

 Part of the Computer Law Commons, Databases and Information Systems Commons, Entrepreneurial

and Small Business Operations Commons, Intellectual Property Law Commons, Law and Economics

Commons, Law and Society Commons, Other Computer Sciences Commons, Political Economy

Commons, Programming Languages and Compilers Commons, Science and Technology Law Commons,

Science and Technology Studies Commons, Software Engineering Commons, and the Technology and

Innovation Commons

Recommended Citation Recommended Citation
Jacqueline D. Lipton, IP's Problem Child: Shifting the Paradigms for Software Protection, 58 Hastings Law
Journal 205 (2006).
Available at: https://scholarship.law.pitt.edu/fac_articles/475

This Article is brought to you for free and open access by the Faculty Publications at Scholarship@PITT LAW. It has
been accepted for inclusion in Articles by an authorized administrator of Scholarship@PITT LAW. For more
information, please contact leers@pitt.edu, shephard@pitt.edu.

https://scholarship.law.pitt.edu/
https://scholarship.law.pitt.edu/fac_articles
https://scholarship.law.pitt.edu/faculty_scholarship
https://scholarship.law.pitt.edu/fac_articles?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/630?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/630?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/612?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/612?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/853?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/352?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/352?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/875?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.pitt.edu/fac_articles/475?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leers@pitt.edu,%20shephard@pitt.edu

Articles

IP's Problem Child:
Shifting the Paradigms for Software Protection

JACQUELINE D. LIPTON*

INTRODUCTION

Imagine that those pre-law computer science classes are finally
paying off, and you have become a successful software developer with a
concept for a new software application that will revolutionize life as we
know it. You previously worked for a large corporation, MensaSoft, Inc.,
and now want to make it on your own. You finally complete a prototype
of the new product. Now you are on the verge of deciding whether to
release it into the open source movement for the good of mankind, or to
produce it commercially and pay off some of those old college debts.

Before you do anything with the software, you receive a letter from
MensaSoft alleging that your new product infringes various proprietary
rights in MensaSoft's software, including patents and copyrights, as well
as breach of contract and infringement of trade secrets. What does all
this mean for you?

It is not a good scenario for you, but at least you are not alone.
Those involved in the computer and software law field face similar
concerns and confusions on a daily basis. Although the framework for
the legal protection of software appeared settled at the end of the
twentieth century, exponential developments in programming
methodology and digital information law are causing cracks to appear in
its foundations. As a result, it is necessary now to re-evaluate the
fundamental bases of software protection law. This is imperative to avoid
the chilling of innovations in software development and the
entrenchment of inefficient digital information practices which are
currently supported by inappropriate applications of intellectual

* Professor and Co-Director, Center for Law, Technology & the Arts, Case Western Reserve

University School of Law. Thanks to Professors Peter Menell and Pamela Samuelson for commenting
on an earlier draft of this Article. An mistakes and omissions are my own.

[205]

HASTINGS LAW JOURNAL

property law.
This Article advocates such a re-evaluation, with a focus on

eliminating, or at least minimizing, inappropriate uses of copyright law in
the software context. It suggests that, to some extent, the current
emphasis on software patenting issues masks some more serious
underlying problems involving software copyrights. Software copyrights
are easy to obtain and assert against competitors even though
incremental development, including some measure of copying, is
fundamental to advances in computer processing. Hence, copyrights can
serve to chill innovation unless clearer guidelines about copyright
limitations in the software context are developed. The focus of this
Article is on identifying some such limitations with specific reference to
the scaling back or elimination of copyright protection for software.

Part I identifies how copyright law is intended to operate in the
software code context. Part II examines the nature of computer software
and recent developments in computer programming methodology that
have an impact on questions of copyright protection for such code. Part
III analyzes recent legal developments, notably the enactment of the
anti-circumvention provisions of the Digital Millennium Copyright Act
(DMCA), that have had troubling practical consequences in the software
copyright context. Part IV suggests reform options, focusing on the
elimination of copyright protection for software code and reliance
instead on other means of protection such as trade secrecy, augmented
by sophisticated modern digital rights management (DRM) measures.
Part V sets out some conclusions on the issue of software copyrightability
and identifies areas where more work needs to be done to create an
appropriate level of legal protection for software more generally.

Before considering the application of copyright law to software, it is
worth briefly making some introductory comments about why this
Article has taken copyright as its focus rather than patent law. Many
would argue patents cause more potential problems in this context than
copyrights in terms of impeding innovation.' Why has so much attention
been focused on the perils of software patenting and not software
copyrighting? Perhaps this is because of the powerful scope of patent
rights. Patents grant patentees exclusive rights to exploit inventions.
These rights can be enforced against the whole world,' whereas software
copyrights are limited to protecting the rights-holder against substantial
copying of relevant code.3 There are also more defenses available to a

i. See, e.g., Iloise Gratton, Should Patent Protection Be Considered for Computer Software-
Related Innovations?, 7 Comp. L. REV. & TECH. J. 223, 235-40 (2003).

2. See 35 U.S.C. § 271(a) (2oo6) (providing that infringement of patent is committed by anyone
who "makes, uses, offers to sell, or sells any patented invention" without authorization).

3. 17 U.S.C. § to6 (2oo6) (defining exclusive rights in copyright works in terms of rights to
reproduce and perform protected works). The underlying difference in the policy basis between

[Vol. 58:2o5

IP'S PROBLEM CHILD

person or entity accused of copyright infringement than patent
infringement. The fair use defense4 in particular mitigates against
overbroad use of software copyrights to stifle competition in relevant
markets Further, there are limitations to the reach of copyright law
under the doctrines of merger and scenes d faire6 that might appear to
make copyright law less problematic than patents in impeding
innovations in software development.'

However, the view that copyright law is less problematic than patent
law assumes that most lawyers, judges, and industry players understand
the scope of copyright protection with all these inherent limitations. This
is likely not the case. Copyrights are obtained much more easily than
patents and require very little effort on the part of the copyright
applicant. Copyright protection arises when an author affixes her work in
a tangible medium of expression.8 Registration is not required to assert a
copyright.' A copyright holder, having gone to little effort to secure the
copyright, may use her asserted rights to create a chilling effect in a
particular market by threatening any competitors that may potentially be

copyright and patent is that copyright protection is limited to the fixed literal expression of code.

Id. § 502. Patents, on the other hand, are granted for inventions generally and these inventions may

incorporate, or even be comprised of, software code. See Diamond v. Diehr, 450 U.S. 175, 177, 192-93
(198i) (upholding validity of patent involving the use of a programmed digital computer); State St.

Bank & Trust Co. v. Signature Fin. Group Inc., 149 F.3d 1368, 1375 (Fed. Cir. 1998) (upholding
validity of a computer program for a method of doing business); In re Alappat, 33 F.3d 1526, 1536-37

(Fed. Cir. 1994) (upholding validity of waveform display in a digital oscilloscope).
4. 17 U.S.C. § io7 (2oo6); MARSHALL LEAFFER, UNDERSTANDING COPYRIGHT LAW § 10.01 (4th ed.

2005) (" The doctrine of fair use is a judicially created defense to copyright infringement that allows a

third party to use a copyrighted work in a reasonable manner without the copyright owner's consent.
Although codified in the 1976 Act, the doctrine of fair use has retained its nature as an equitable rule

of reason to be applied where a finding of infringement would either be unfair or undermine 'the
progress of science and the useful arts.'").

5. In fact, specific applications of the fair use defense in the computer software context have
developed over the years, notably to protect those who need to copy software in order to create an

interoperable program. See Sega Enter. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1514 (9th Cir. 1993)
(holding that decompilation of a computer program, involving copying of the program, in order to
produce a compatible, non-infringing program is a fair use); LEAFFER, supra note 4, § 10.13 (discussing

fair use in the software reverse engineering context).

6. LEAFFER, supra note 4, § 2.I4[B][4] ("The merger doctrine has been applied primarily to
works of utility, such as forms, rules, and computer programs. Under the merger doctrine, courts will

not protect a copyrighted work from infringement if the idea underlying the work can be expressed

only in one or few different ways, for fear that there may be a monopoly on the underlying idea. In

such an instance, it is said that the work's idea and expression 'merge.' Under the related doctrine of

scenes dfaire, courts will not protect a copyrighted work from infringement if the expression embodied
in the work necessarily flows from a commonplace idea.").

7. See discussion of merger and scenes J faire doctrines, infra Part I.B.2-3.

8. 17 U.S.C. § 102(a); LEAFFER, SUpra note 4, § 7.01.
9. However, registration is necessary in the United States in order to bring an infringement

action. See LEAFFER, supra note 4, § 7.05. In the computer software context, the author is usually the
programmer, although that person can clearly transfer copyright ownership to another person or
entity, such as her employer.

December 2o06]

HASTINGS LAW JOURNAL

infringing upon her copyright. Although a fair use defense or a merger
argument may be available to the competing entity, that person or
business may not be sufficiently versed in the scope and nature of
software copyrights to utilize these arguments and rebut claims made in a
demand letter. That person may not even realize that, in order to infringe
a copyright, she would have needed an opportunity to peruse and copy
the relevant code.'" Additionally, even if the competitor has the
wherewithal to withstand the demand letter and face the prospect of
litigation, many judges may not be sufficiently familiar with the
operation of software copyright law to reach the "right" result.

The software copyright picture becomes even more complicated
when this initial uncertainty is coupled with new programming
methodologies, such as object-oriented programming," that rely on
copying and reusing code as part of the underlying programming
paradigm. While copyright law strives to regulate unauthorized copying,
modern programming methods advocate copying and reuse as a
fundamental pillar of software design. This makes copyright an even less
attractive proposition for software protection if the aim is to encourage
innovation.

While some comnpanies in the computer software industry are
unquestionably flourishing in today's marketplace, they may be doing so
by taking advantage of competitors who lack the wherewithal to combat
software copyrights. These large software companies also utilize
questionable software patents, restrictive DRM,'" and contractual
measures to stifle competition. All of these barriers may be standing in
the way of the incremental developments essential for software
innovation.'3 Given the advances in these other methods of protecting
software in recent years, software copyrights are less necessary today

Io. This is because copyright does not protect an author against independent reinvention of the
same or a similar work, but only against actual copying. See id. § 2.o7[B].

[I]n copyright law all that is required for protection is independent creation, not striking
uniqueness, ingenuity, or novelty. Thus, nothing prevents a valid claim of copyright on two
or more substantially similar works so long as they were independently created. An action
for copyright reflects this principle by requiring the copyright owner to prove both
substantial similarity and copying. Unlike a case for patent infringement, proving
substantial similarity alone will not be enough to prove copyright infringement; one must
prove by direct or circumstantial evidence that the infringer actually copied another's work.

Id. (citations omitted).
ii. For a detailed description of the theory underlying object oriented programming

methodologies, see infra Part I1.B.3.

12. See generally Declan McCullagh & Milana Homsi, Leave DRM Alone: A Survey of Legislative

Proposals Relating to Digital Rights Management Technology and Their Problems, 2005 MICH. ST. L.

REV. 317, 318 ("Digital rights management is a general term that refers to technology-based
protections that permit a rights holder to restrict a user's access to and control of digital content.").

13. Pamela Samuelson et al., A Manifesto Concerning the Legal Protection of Computer

Programs, 94 COLUM. L. REV. 2308, 2330-32 (1994) (describing ways in which innovation in computer
programming is largely incremental and cumulative in character).

[Vol. 58:205

IP'S PROBLEM CHILD

than in the past. Lawmakers in the future should consider scaling back
copyright protection for software to the point where it is eliminated in all
but the most obvious cases of large-scale verbatim copying of code. Even
then, there may be some question as to the copyrightability of relevant
code because of uncertainties in the application of the merger and scenes
d faire doctrines. Thus, retaining any level of copyright protection for
code will require clearer guidelines in the future about the level of
originality required.

The elimination, or at least scaling back, of copyright protection for
software would allow more attention to be paid to more appropriate
avenues of legal and technological protection for code, including
appropriately tailored software patenting policies, coupled with
sophisticated DRM measures and contractual licenses. Unlike copyright,
all of these avenues focus on protecting the functional value of software
and all of them require software developers, who seek to assert
proprietary interests in their code, to go to some personal cost and effort
to put effective protection measures in place. In this context, it is
important to appreciate that contractual and DRM measures are much
more sophisticated and reliable from the software developer's point of
view today than they were when copyright was first employed to protect
code.

Whatever approach is ultimately taken to the question of software
copyrightability, Congress, the judiciary, and, to some extent, the United
States Patent and Trademark Office (USPTO), likely will have to
address potential problems relating to the over-protection of software
through means other than copyright. With so many avenues of protection
currently open to software developers and so little consensus as to the
exact scope of each measure, it is difficult to resolve problems of over-
protection without first unraveling other options and examining them
individually. Perhaps unraveling problems relating to software copyrights
and removing the specter of inappropriate copyright use in the software
context can be regarded as an important first step within this larger
inquiry. Copyright law is a good starting point because copyright is
arguably the least-suited paradigm for protecting software and because it
has been relied on so heavily as a means to provide inexpensive and
immediate protection to software developers.'4

I. COPYRIGHTING CODE

A. COPYRIGHT FUNDAMENTALS

Copyright protection for software is intended to be quite limited in

14. See Peter Menell, An Analysis of the Scope of Copyright Protection for Application Programs,
41 STAN. L. REV. 1045, 1072 (1989).

December 2006]

210 HASTINGS LAW JOURNAL [Vol. 58:205

operation and, in particular, to protect only fixed literal elements of
software code. To understand why this causes confusion in modern
software copyrighting practice, it is necessary to understand why
copyright law was originally used as the principal means for the legal
protection of software, and some of the intended limitations of copyright
law and practice. One of the more obvious limitations relates to the
relatively slow development of legal precedent in this area in the face of
rapid innovations in the software industry. While copyright law facially
might have seemed an appropriate avenue of protection of code in the
I98Os and 1990S,' 5 more recent advances in programming methodology
have moved computer code further and further away from the kinds of
literary work that copyright law has historically protected.

Copyright law has traditionally protected original works 6 fixed in a
physical medium.'7 The boundaries of the originality requirement have
been difficult to ascertain over the years. The consensus is that the bar is
not particularly high, 8 at least as compared with the novelty 9 and non-
obviousness'0 requirements in patent law. The boundaries of the fixation
requirement also posed some difficulties, particularly in the early days of
the personal computer revolution, but it is now well settled that software
code stored on a digital storage medium' will be sufficiently fixed to
attract copyright protection."

The inherent characteristics of copyright law pose problems for its

15. See Jane Ginsburg, Four Reasons and a Paradox: The Manifest Superiority of Copyright Over

Sui Generis Protection of Computer Software, 94 COLUM. L. REV. 2559, 2559 (1994); Menell, supra note
14, at 1047 (noting the National Commission on New Technological Uses of Copyright Works
(CONTU) made a rough empirical judgment in 1978 that copyright would best promote invention and
development in the software industry); John Swinson, Copyright or Patent or Both: An Algorithmic
Approach to Computer Software Protection, 5 HARV. J.L. & TECH. 145, 146 (I99I) (proposing a new
copyright law test to protect software code).

s6. 17 U.S.C. § I02(a) (2006) (noting copyright subsists "in original works of authorship");
LEAFFER, supra note 4, § 2.07[B] (stating that for copyright purposes, an original work is one that is
independently created and owes its origin to the author, rather than being copied from another).

17. 17 U.S.C. § 102(a) (noting copyright subsists "in original works of authorship fixed in any
tangible medium of expression"); LEAFFER, supra note 4, § 2.02 (describing the fixation requirement).

r8. See Feist Publ'ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 358-59 (199I) (concluding that in
the copyright context, a vast majority of compilations will pass the copyright originality test, but "a
narrow category of works in which the creative spark is utterly lacking or so trivial as to be virtually
non-existent" cannot sustain a valid copyright on this basis); see also WILLIAM CORNISH & DAVID
LLEWELYN, INTELLECTUAL PROPERTY: PATENTS, COPYRIGHTS, TRADE MARKS AND ALLIED RIGHTS 389 (5th
ed. 2003) (noting in the United Kingdom, the originality standard has been described as "de
minimis").

19. 35 U.S.C. § 102 (2006). 35 U.S.C. § ioI also requires an invention to be "new and useful" for

the subject matter patentability test.
20. Id. § 103.
21. Such as a computer's hard drive, a floppy disc, CD, or DVD.
22. MAI Sys. Corp. v. Peak Computer, Inc., 991 F.2d 511, 519 (9th Cir. 1993) (finding that loading

copyrighted software into a RAM memory in a computer would constitute fixation for copyright
purposes); LEAFFER, supra note 4, § 2.03[B].

IP'S PROBLEM CHILD

application to software protection. Copyright protection lasts for a fixed
statutory period, currently the author's life plus seventy years in most
jurisdictions, including the United States. 23 This may not be the best fit
for an industry that thrives on fast paced incremental innovations. 4

Copyright protection is also very cheap and easy to obtain. In most
jurisdictions, no formalities are required for a valid copyright to come
into existence, although registration is necessary in the United States for
enforcement purposes. 5

One of the limitations of copyright law, particularly in the software
code context, is that it only protects against activities related to
unauthorized reproductions of a protected work. 6 It does not prevent
independent reinvention of a work or prohibit the creation of a product
that functions similarly to the original, but uses a different literal
expression. The latter situation is not uncommon in the software
industry 7 and can arguably lead to under-protection of software code.
Copyright will only protect code in cases of exact duplication of code2
While these situations unquestionably have the potential to be market-
destructive,29 they are a very narrow sub-class of all of the concerns
raised by software developers.

B. COPYRIGHT LIMITATIONS

i. Fair Use and Reverse Engineering
A brief consideration of some of the relevant aspects of copyright

law evidences that the initial intentions of Congress and the judiciary
were only to provide limited protection to software through copyright
law. This part outlines the ways in which copyright law has been
theoretically limited in application to software, while the following parts
show how these theoretical limitations are beginning to break down in
practice. The later parts evidence ways in which software is now arguably
receiving greater protection than originally intended by copyright law.

23. See, e.g., 17 U.S.C. § 302(a) (2oo6).

24. See Samuelson et al., supra note 13, at 2357 (suggesting the then-seventy-five year term of
protection was too long for the needs of the software industry).

25. See Judith Szepesi, Maximizing Protection for Computer Software, 12 SANTA CLARA COMPUTER

& HIGH TECH. L.J., 173, 188 (1996) ("Neither publication nor registration is necessary in order to
receive [copyright] protection. No investment beyond the creation and fixation of the work is required
for copyright protection. However, registration is a prerequisite for filing suit in federal court. Special
damages can also be collected if the copyright is registered.").

26. See 17 U.S.C. § lO6 (2oo6); LEAFFER, supra note 4, § I.o5[A] (enumerating exclusive rights
under copyright and their limitations).

27. See Samuelson et al., supra note 13, at 2317 ("A second comer can develop a program having
identical behavior, but completely different text through a process sometimes referred to as 'black
box' testing.").

28. Id. at 2421.

29. Id. (noting exact duplications of code are the most market-destructive appropriations of
program behavior).

December 2006]

HASTINGS LA W JOURNAL

The main theoretical limitations imposed on software protection through
copyright law arise under the fair use defense, the merger doctrine, the
scenes d faire doctrine, and the copyright misuse doctrine. These aspects
of copyright law are the subject of this part.

In a nutshell, the fair use defense has its origins in the common law,30

although it has now been loosely codified in Title 17 of the United States
Code.3' The defense allows a third party to use a copyrighted work in a
reasonable manner without the express permission of the copyright
owner.3" The main significance of the doctrine in the software copyright
context arises in debates regarding the extent to which a competitor of a
software developer should be entitled to reverse engineer a computer
program.33 Courts have held that disassembly or decompilation of a
computer program to produce a compatible, non-infringing program can
amount to fair use in the copyright context.34

Studying reverse engineering does shed some light on the level of
protection software developers can realistically expect from copyright
law. As noted by Professor Samuelson, it is very easy for a competitor to
develop a program with identical functional behavior to the original but
with completely different underlying literal code.35 Specific forms of
reverse engineering, such as "black box" testing, can be used to achieve
such results. This kind of reverse engineering avoids even the need to
invoke the fair use doctrine because it relies on different teams of
software engineers at different stages of the process to avoid anyone
from ever making a literal copy of the original program during the
process.37 Thus, reverse engineering is excused in various ways under
copyright law. Some literal copying is excused under the fair use doctrine
to make compatible, non-infringing programs,38 while reverse
engineering not involving literal copying does not invoke copyright law
at all.39

30. LEAFFER, supra note 4, § IO.O1 ("The doctrine of fair use is a judicially created defense to
copyright infringement ").

31. This section was inserted in the t976 revisions to the Act. See 17 U.S.C. § 107 (2006).
32. See LEAFFER, supra note 4, § 1001.
33. See id. § 10.13.
34- Sega Enter. Ltd. v Accolade, Inc., 977 F.2d 151o, i52o (9th Cir. I993); LEAFFER, supra note 4,

§ tot3; see also MARK LEMLEY ET AL., SOFTWARE AND INTERNET LAW 136-38 (2d ed. 2003).

35. Samuelson et al., supra note 13, at 2317.
36. Id.
37. Id. at 2317-18. ("'[B]lack box' testing ... involves having a programmer run the program

through a variety of situations, with different inputs, making careful notes about its behavior. A
second programmer can use this description to develop a new program that produces the specified
behavior (i.e., functionally identical to the first program) without having access to the text of the first
program, let alone copying anything from it. A skilled programmer can, in other words, copy the
behavior of a program exactly, without appropriating any of its text." (citations omitted)).

38. Sega, 977 F.2d at 152o; LEAFFER, supra note 4, § 10.13; see also LEMLEY ET AL., supra note 34.
39. See, e.g., Samuelson et al., supra note 13, at 2317-18.

[Vol. 58:205212

IP'S PROBLEM CHILD

2. Merger
Copyright's merger doctrine is also potentially relevant in the

computer software context. However, this doctrine is somewhat
underutilized, possibly because its scope of operation is not well
understood in general,4' let alone in the specialized software
development context. The merger doctrine traces from the 188o case of
Baker v. Selden.4' As explained by Professor Leaffer:

[T]he doctrine of Baker v. Selden implies that there are some instances
where the use of a system or process necessitates the identical copying
of the author's expression of the system or process. In other words, if
the underlying idea (or system, process, or method of operation) can
effectively be expressed in only one way, the idea and expression are
said to have "merged." When this occurs, the work cannot receive
protection under copyright law. To allow copyright protection in such
an instance would undermine the notion that ideas are in short supply
and their protection is not worth the social costs of the monopoly. It
would also blur the distinction between copyright and patent law.4

As software programming methodology has developed over the last
decade or so, it is arguable that the merger doctrine should be
increasingly applied to many disputes involving alleged software
copyright infringements. In fact, some cases are beginning to identify the
merger doctrine as very significant in software copyright infringement
actions, particularly with respect to simple, functional software
applications like digital encryption devices.43 The following discussion
explains in more detail why recent developments in programming
methodology necessitate that courts and legislatures take a more detailed
look at the potential application of the merger doctrine in the software
code context.

Briefly, as computer programs are becoming more modularized' and
object-oriented,45 more situations are likely to arise where ideas and
expressions are merged. Some judges have recently suggested that in
order to attract copyright protection,46 some kinds of code will need to be

40. LEAFFER, supra note 4, § 2.1 4 [B][2] (describing some apparent inconsistencies of application
of the merger doctrine).

41. lot U.S. 99 (188o).
42. LEAFFER, supra note 4, § 2.1 4 [B][2].
43. See, e.g., Lexmark Int'l, Inc. v. Static Control Components, Inc., 387 F.3d 522 (2004).

44. The concept of modularization in the computer programming sense is explained infra Part
11.B.2.

45. The theory of object-oriented programming is explained infra Part 11.B.3.
46. This discussion assumes that a merger of idea and expression will negate the possibility of

copyright protection ab initio for a particular program or section of code. However, it is worth noting
that there is arguably a federal circuit split as to whether the merger doctrine functions as a bar to
copyrightability or rather as a defense to infringement, explaining a substantial similarity between two
works. See Lexmark, 387 F.3d at 557 (Feikens, J., concurring in part and dissenting in part) (noting
that it is unclear whether the merger doctrine operates as a bar to copyrightability or rather as a
defense to particular types of infringement).

December 2006]

HASTINGS LAW JOURNAL

drafted in a more unusual or original manner to avoid the merger
doctrine. 7 This approach might ultimately lead to inefficiencies in
programming because more unusual approaches to the programming of
simple functions are not likely to achieve the most efficient functional
results. Thus, a robust application of the merger doctrine in some areas
of software copyright law might emphasize the inappropriateness of
copyright law to protect the valuable aspects of software. Nevertheless,
the application of the merger doctrine is certainly appropriate in cases
where a software developer is attempting to utilize copyright law to gain
a long term monopoly over an extremely simple and functional module
of code.

3. SCENES A FAIRE

Similar points may be made about the scenes d faire doctrine as
applied to computer code, although the application of this doctrine has,
to date, proven to be even more uncertain than the merger doctrine. The
scenes d faire doctrine is a judicially created aspect of copyright law that
deals with problems arising from the fact that, in certain circumstances, it
is virtually impossible to create a work without employing stock standard
characters, motifs, scenes, etc. 8 Under the scenes di faire doctrine, courts
will not uphold copyrights if the relevant expression necessarily derives
from a commonplace idea.49 The most obvious applications are to
literary, artistic, and musical works such as novels, plays, movies, and
songs, where there are a limited number of ways to express a particular
narrative element." However, there is no reason why similar ideas cannot
be applied in the software context. There is an increasing jurisprudence
suggesting that judges are prepared to consider elements of code as stock
ways of expressing a particular programming idea.' Thus, copyright
protection would not be available to these stock elements.52

47. Id. at 551-52 (Merritt, J., concurring) (expressing concern that future manufacturers will draft

more "creative" software code to avoid holdings such as the appeal decision in Lexmark that deny

copyright protection for lock out codes).
48. Douglas Lichtman, Copyright as a Rule of Evidence, 52 DUKE L. 683, 738 (2003) (noting that

scenes d faire is a judicially created doctrine).

49. See LEAFFER, supra note 4, § 2.14[B][4].
50. See B. MacPaul Stanfield, Finding the Fact of Familiarity: Assessing Judicial Similarity Tests in

Copyright Infringement Actions, 49 DRAKE L. REV. 489, 5o8-io (2OO) (discussing cases involving
literary, movie, and music copyrights and the application of the scenes d faire doctrine).

51. See Lexmark, 387 F.3d at 535-36 (surveying case law and commentary on the application of

the scenes d faire doctrine in the software code context).
52. It is not clear whether the scenes d faire doctrine is intended to function purely as a defense to

an infringement action, or whether it potentially negates the copyrightability of the claimed subject
matter ab initio. A leading copyright treatise suggests that the application of scenes d faire does not

negate the copyrightability of the relevant elements of a work, but rather explains, presumably by way

of defense, any substantial similarity between two works. MELVILLE B. NIMMER & DAVID NIMMER, 4
NIMMER ON COPYRIGHT § 13.03[B][4] (2006); see also Lexmark, 387 F.3 d at 559 (Feikens, J., concurring

in part and dissenting in part) (noting that there is currently a circuit split on this question, as with the

[Vol. 58:205

IP'S PROBLEM CHILD

4. Copyright Misuse
As noted above, this Article advocates eliminating, or at least

significantly scaling back, copyright protection for software because it is a
bad fit with the needs of the software community. Alternatively, the
operation of doctrines such as merger and scenes d faire in the software
context should be clarified to avoid over-protection of software under
copyright law. However, it is worth briefly noting the copyright misuse
doctrine as another potential avenue for combating potential over-
protection of software through copyright law. The copyright misuse
doctrine is a somewhat troubling aspect of copyright law, the scope of
which is not well understood in practice. 3 It derives from the patent
misuse doctrine that began as a defense to a patent infringement suit and
has been used to prevent patent owners from abusing market power to
hinder competition through tying54 and other restrictive licensing
arrangements.5 The idea of exporting a similar concept into copyright
law has been based on the same policy arguments as those underlying
patent misuse: that is, the idea of seeking to increase the store of human
knowledge and expression by encouraging scientific and artistic
innovation without conferring monopoly power over property not
directly subject to a copyright or patent.

Professor Leaffer has suggested that copyright misuse should be
more limited in operation than patent misuse because of differences
between the nature of copyrights and patent rights." He has noted that
copyrighted works are generally highly substitutable and that many
different songs, films, or computer programs may compete at the one
time for consumers' dollars." Given this fact, the concern about unfair
monopolies in these products is less likely to arise than in the patent
context, where patents are more likely to contribute to the development
of an economic monopoly in a particular patented product.

merger doctrine); cf Stanfield, supra note 5o, at 5o8 (noting that scenes d faire doctrine separates
copyrightable elements of a work from non-copyrightable settings, sequences of events, and stock
themes that arise in a particular work).

53. See generally Dan Burk, Anticircumvention Misuse, 50 UCLA L. REV. 1095, 1124-31 (2003);
Ilan Charnelle, The Justification and Scope of the Copyright Misuse Doctrine and its Independence of
the Antitrust Laws, 9 UCLA ENT. L. REV. 167, 167 (2002); Brett Frischmann & Dan Moylan, The
Evolving Common Law Doctrine of Copyright Misuse: A Unified Theory and Its Application to
Software, 15 BERKELEY TECH. L.J. 865, 868 (2O0O); Karen E. Georgenson, Reverse Engineering of
Copyrighted Software: Fair Use or Misuse?, 5 ALB. L.J. Sci. & TECH. 291,312-20 (1996).

54. Tying is an antitrust practice involving the supply of one good or service on condition that the
purchaser also buys a second good or service that is therefore effectively tied to the first. See, e.g.,
Robert W. Emerson, Franchising and Consumers' Beliefs About "Tied" Products: The Death Knell for
Krehl?, 45 FLA. L. REV. 163, 165-8o (1993).

55. LEAFFER, supra note 4, § Io.2I[D][i].

56. Id.
57. Id.
58. Id.

December 2006]

HASTINGS LAW JOURNAL

In the computer program context in particular, with the ability of
competitors to reverse engineer programs as noted above, many
substitutes are likely. At least this would technically be the case in the
absence of other effective legal and practical avenues of protection
including patents, DRM measures, and restrictive contractual licenses
that have a negative impact on a competitor's ability to reverse engineer.
Thus, it may be that copyright, coupled with restrictive DRM measures
and contractual licenses, leads to a situation that might amount to
copyright misuse because it effectively bars competitors from creating
competing products thereby giving the original developer a monopoly.
Where a developer then uses this monopoly to charge unfair prices or to
tie unrelated products and services to the protected software, a strong
policy argument for the development of a copyright misuse doctrine is
created. 9

Recent case law does appear to be evidencing moves in this
direction, particularly in the wake of the enactment of the DMCA. There
has been increased concern that software developers can utilize
restrictive DRM measures bolstered by the anti-circumvention and anti-
trafficking provisions of the DMCA to shut down competition in markets
unrelated to the protected software.6° This prospect raises a number of
complicated issues, most of which are beyond the scope of this Article.
For example, would a copyright misuse defense apply to a suit by a
copyright owner for infringement of the anti-circumvention and anti-
trafficking provisions of the DMCA? 6' Various suggestions have been
made in recent years to address these concerns, most of which relate to
amending the DMCA to clarify its position on abuse of DRM measures.62

This Article takes a different approach. 63 It suggests that if computer

59. Jacqueline Lipton, The Law of Unintended Consequences: The Digital Millennium Copyright

Act and Interoperability, 62 WASH. & LEE L. REV. 487, 540-42 (2005).
60. See Lexmark Int'l, Inc. v. Static Control Components, Inc., 253 F. Supp. 2d 943 (E.D. Ky.

2003), vacated, 387 F.3d 522 (6th Cir. 2004); Chamberlain Group, Inc. v. Skylink Techs., Inc., 292 F.
Supp. 2d 1023, 1033-40 (N.D. 111. 2oo3), affd, 381 F.3 d 1178 (Fed. Cir. 2004); see also Burk, supra note
53; Lipton, supra note 59; ELECTRONIC FRONTIER FOUNDATION, UNINTENDED CONSEQUENCES: FIVE
YEARS UNDER THE DMCA passim (2003), available at http://www.eff.org/IP/DMCA/
unintendedsconsequences.pdf.

61. See Burk, supra note 53, at I132-40 (noting that because the DMCA's anti-circumvention
right is a different kind of right to traditional copyright in that it prevents "access" as opposed to
merely copying, the type of anticompetitive misuse of this right does not implicate patent or copyright
misuse); Lipton, supra note 59, at 540-42 (stating the potential application of the copyright misuse
doctrine in cases involving infringements of the anti-circumvention and anti-trafficking provisions of
the DMCA is unclear).

62. See Burk, supra note 53, at 1132-40 (suggesting the need to develop a new "anticircumvention
misuse" doctrine to apply to abuses of the DMCA's anti-circumvention and anti-trafficking provisions
by copyright holders).

63. 1 note that this approach is different to the approach I advocated previously. Lipton, supra
note 59. In that article, I advocated a presumption against DMCA liability where the plaintiff could
not show that the protection of a copyrighted work was a central commercial concern. Id. at 521-28. 1

[Vol. 58:205

IP'S PROBLEM CHILD

code was uncopyrightable per se or, at the very least, the merger and
scenes d faire doctrines were used to minimize the amount of software
copyrighting, questions relating to the scope of the copyright misuse
doctrine could largely be avoided altogether, particularly in the DRM
context. If relatively stock modules of code could not be copyrighted
either because of the elimination of copyright protection for code, or as a
result of the application of the scenes d faire or merger doctrines, that
code could not be used as the basis of a DMCA action that effectively
ties an associated product or service to the code. This would avoid the
need to rely on a copyright misuse or anti-circumvention misuse doctrine
in such contexts. Without copyright protection, a copyright misuse
defense would be unnecessary. This Article focuses on removing much
stock standard code, if not all code, from the ambit of copyright law.

Concerns raised some years ago about the suitability of copyright to
protect code clearly still resonate today64 and, in fact, developments in
both copyright law and programming methodology have made the
situation much more complex than it has been in the past. In many ways,
copyright law is a worse fit for computer software products today than it
was in the I98Os and 199os. In fact, arguably the only really beneficial use
of software copyrights, outside of the narrow case of preventing exact
duplication of code generally, is in the area of open source software.6 s

Open source software relies to a significant extent on the ability to assert
copyrights66 in software and then to attach open source licenses to those
copyrights to ensure that no one can monopolize the code without
infringing the license. 67 Technically, the same result would likely be
possible in the absence of copyright protection for software code. It
would just be more cumbersome to draft relevant license provisions if
they were not attached to a familiar form of intellectual property right.

am not recanting that position here, but simply suggesting that the DMCA misuse problem is born out
of a larger concern about copyrighting software code more generally. The removal of copyright
protection for software code as a general matter would render moot the suggestions that some new
approach needs to be taken to what Professor Burk would call "anticircumvention misuse." Burk,
supra note 53, at 1132. However, if copyright protection is to be retained for software code in the
longer term, Professor Burk's and my suggestions for reforming the application of the DMCA's anti-
circumvention and anti-trafficking provisions would still stand. These are alternative arguments
dealing with the problem at different levels of generality.

64. See Samuelson et al., supra note 13.
65. Id. at 2421.

66. Patents are too time consuming and economically cumbersome for the open source
movement and, in any event, open source developers generally do not want to rely on patents which
tend to be used within commercial markets to generate economic monopolies in particular inventions.

67. Joseph Scott Miller, Allchin's Folly: Exploding Some Myths About Open Source Software, 20

CARDOzo ARTS & ENT. L.J. 491, 497 (2002) ("The GPL [General Public License used by the open
source movement] demonstrates that one can harness the control that copyright law provides to make
a piece of software fully and indefinitely accessible, or free, to its users. The carefully crafted license
terms do all the work. In other words, open source software, far from forswearing copyright
protection, relies centrally on the basic rights that copyright law gives to authors.").

December 2006]

HASTINGS LAW JOURNAL

Even if a stand-alone intellectual property right is needed to support the
open source movement, it is questionable whether software copyrights
are the most appropriate option here. This might be an area where a new
sui generis form of intellectual property right should be tailored to
address the needs of the relevant software community.

II. EMERGING TRENDS IN PROGRAMMING METHODOLOGY

Modern advances in software programming add a new dimension to
the concerns about software copyrighting raised above. Much of the legal
literature on software copyrighting has assumed that the nature of
software remains relatively static over time. In fact, the kind of software
in existence when copyright protection was first extended to software
was significantly different than the kind of software commonly
developed today. In many ways, more recent developments in
programming methodology make copyright protection even less
appropriate for computer code than it has been in the past.

A. THE ANATOMY OF A COMPUTER PROGRAM

i. Design Documentation
To understand relevant trends in software design methodology, it is

important to have a basic understanding of the general structure, or
anatomy, of a computer program. The software design process involves a
number of different stages during which different program elements are
created. When writing a new program from scratch, most programmers
will start with some form of design or plan to help them structure the
overall program. This could be expressed in a graphical format such as a
diagram or flowchart, or it could be in a more verbal form, such as
pseudocode.68 Whatever the precise format, the design will give the
programmer an idea of the structure of the program and what sorts of
algorithms69 will be needed.

Obviously, whatever the precise methodology chosen to create the
overall program design, it will be in a fixed, literal form of expression.
Thus, at first glance, it is likely that these designs, to the extent that they
are original, meaning not copied,' would generally attract copyright
protection in most jurisdictions as either literary or artistic works,

68. Pseudocode is basically a form of "structured English" which looks like the source code of a
high-level programming language, but is more generic and perhaps somewhat more easily readable.
See LESLEY ANNE ROBERTSON ET AL., SIMPLE PROGRAM DESIGN: A STEP-BY-STEP APPROACH 6 (3d ed.
2000).

69. Id. at 271 ("[Algorithms are a] set of detailed, unambiguous and ordered instructions
developed to describe the processes necessary to produce the desired output from given input.").

70. It is not as unusual as one might think to copy flowcharts or pseudocode from other sources to
write a new program. Computer programming texts, for example, often contain examples of model
structures for common programming problems. See, e.g., ROBERTSON ET AL., supra note 68, at 149-73
(containing general algorithms in pseudocode and flowchart notation for common business problems).

[Vol. 58:205

IP'S PROBLEM CHILD

depending on their precise format. Most copyright conflicts have not
involved these early design documents.

2. Source Code and Object Code
More important copyright questions have arisen in relation to the

later steps in the software development process, particularly the source
code, and, to some extent, the object code. Source code is the set of
instructions written by a programmer in a specific computer language.
Over the history of computing, a variety of different languages, and
different levels of computer languages, have been developed.7' Because a
computer only understands binary numbers (ones and zeros), the earliest
forms of computer language were actually written in machine-readable
binary code (or "machine language"). In fact, it is still the case today that
programs written in more sophisticated languages must be converted into
binary code, or machine-readable object code, via an interpreter or
compiler in order to be executed by a computer.72 The next development
after machine language was assembly language that replaced ones and
zeros with mnemonic codes-abbreviations that were easy for a
programmer to remember, such as "MP" for multiply.73 Assembly
languages use a translating device called an assembler to convert source
code into machine language so the computer can understand and execute
the program.74

At the next level of sophistication after assembly language came the
high-level languages like FORTRAN and COBOL.75 These lan guages
represented a significant evolution in computer programming.7 They
were designed for specific kinds of problems and used syntax that would
be familiar to people who dealt with those problems most often.
FORTRAN was designed to solve mathematical problems while
COBOL was designed to solve business problems and used commands
and operations that were familiar to business people.77 Again, these kinds
of languages required a translator in the form of a compiler to translate
the program to machine-readable object code for the computer to read
and execute.78 Other common examples of these high-level languages
include BASIC, C, C++, and Java.79 These high-level (or third
generation) 80 languages are the most commonly used in many modern

71. H.L. CAPRON & J.A. JOHNSON, COMPUTERS: TOOLS FOR AN INFORMATION AGE 447-50 (8th ed.
2004).

72. Id. at 448.

73. Id.
74. Id. at 449.
75. See id.
76. Id.
77. Id.
78. Id.
79. Id. at 450.
8o. In this context, machine language was the first generation language, and assembly language is

December 2006]

HASTINGS LAW JOURNAL

commercial applications.
This is where the interesting legal issues began to arise. Once

languages adopted source code that was more like a human language and
less like binary code, the fixed literal expressions of the code created by
programmers looked more like any other literal expressions protected by
copyright law. The main difference was their functionality. However
creative they were in terms of expression or underlying idea, their
commercial value lies ultimately in their functional behavior.'

Following the high-level languages came the very high-level
languages also known as fourth generation languages (or 4GLs). These
languages are distinguishable from the high-level third generation
languages in that they are non-procedural languages. 3 Whereas the
previous three generations of languages, in fact, were procedural in the
sense that they required a programmer to describe a step-by-step
procedure to solve a problem, the 4GLs allow a programmer to specif
desired results and the language in many cases can develop the solution.
Using 4GLs enables much greater productivity because most ideas can
be expressed in fewer lines of code than in earlier generation languages. 85

Computer science is now producing the beginnings of fifth
generation languages, which are often described as natural language
because of their resemblance to natural spoken or written English.86

Fourth and fifth generation languages are somewhat beyond the scope of
this Article. It is not necessary to look any further than third generation
languages7 to observe that copyright law is an unsuitable paradigm for
the legal protection of software code. Nevertheless, the development of
these languages is a reminder of the constant advances in information
technology that require the law to keep pace with new challenges. It
should never be assumed that a field like computer science remains static
over time; once a legal paradigm has been adopted, it must be regularly
reviewed. Computer science developments occur rapidly and require
lawmakers to constantly monitor the legal frameworks employed to
protect code.

When considering the nature of source code generally, it becomes
obvious why it was possible to apply copyright law as a legal protection

referred to as the next (or second) generation. See id. at 448.
8i. Samuelson et al., supra note 13, at 2319 (noting that programs have almost no value in their

fixed literal expression, rather their value lies in their behavior).
82. CAPRON & JOHNSON, supra note 71, at 449.
83. Id.
84. Id.
85. Id.
86. Id. at 450.
87. In fact, third generation languages are still the most commonly used languages in modern

programming despite recent advancements in fourth and fifth generation programming. See DAVID
MCCOMB, SEMArrcs IN BUSINESS SYSTEMS 140 (2003).

[VOL. 58:205

IP'S PROBLEM CHILD

mechanism. Source code does in some ways resemble the traditional
subject matter of copyright law if it is sufficiently original in its
expression and is affixed in a permanent form. If we accept that a work
can be fixed in the memory of a computer,88 then we seem to have
something that at least looks like a literary work. This view has certainly
been accepted internationally' and has been adopted in most national
copyright legislation.'

With regard to concerns about the value of software being in its
functionality rather than its literal code, Professor Menell in the late
i98os noted that it was surprising, although perhaps understandable, that
copyright would be adopted as a key form of protection during the early
legal debates on software.9 He noted that the majority of the National
Commission on New Technological Uses of Copyright Works (CONTU)
believed that the advantages of copyright for software protection
outweighed the disadvantages of other methods of protection such as
patent and trade secret law.92 The advantages of copyright protection
included the lack of formalities for protection and the lengthy duration
of protection.' The disadvantages of patent and trade secret protection
included doctrinal and practical difficulties inherent in obtaining patent
protection, and the ease with which trade secret protection for software
could be lost.'

Subsequent history has shown that patent and trade secrecy have not
proven as problematic as CONTU feared. Patents have readily been
granted over software and software-related inventions in the United
States.95 While initially more problematic, trade secrecy has become a
much more viable option due to modern sophisticated DRM measures
and enforceable contractual licensing provisions. 96

88. MAI Sys. Corp. v. Peak Computer, Inc., 991 F.2d 511, 517-19 (9th Cir. 1993) (holding that a
recordation or writing needs to last a long time to attract copyright protection and loading copyrighted
software into a RAM memory in a computer constitutes fixation for copyright purposes); LEAFFER,

supra note 4, § 2.03[B].
89. See World Intellectual Property Organization Copyright Treaty, art. 4, Dec. 20, 1996, S.

TREATY Doc. No. 105-17 (2002), 36 I.L.M. 65 [hereinafter WCT] (providing that computer programs
are to be protected as literary works under copyright law whatever their form of expression).

90. See, e.g., Copyright, Designs and Patents Act, 1988, c. 48, § 3(0)(b) (Eng.) (defining a
computer program as a literary work for copyright purposes); Copyright Act, 1968, § Io(i) (Austl.)
(including computer programs in the definition of "literary work").

9i. Menell, supra note 14, at 1072.
92. Id.

93. See id.
94. Id.
95. World Intellectual Property Organization, Business Method and Computer Software Patents,

http://www.wipo.int/sme/en/e-commerce/computer-software.htm (last visited Nov. 5, 2oo6) ("Today,
there are an increasing number of software and business methods which are protected by patents in
the United States).

96. See ProCD, Inc. v. Zeidenberg, 86 F.3d 1447, 1449 (7th Cir. 1996) (upholding clickwrap and
shrinkwrap license applied to computerized database); In re RealNetworks, Inc., Privacy Litig., No. oo-

December 2oo6] 221

HASTINGS LAW JOURNAL

Although not technically within the ambit of many of the early
debates on legal protection of software, it is worth noting that there
appears to be no necessary bar to the protection of object code through
copyright law.97 It is an original literal expression, albeit consisting of
only ones and zeros. There appear to be few situations where a software
developer today would seek to assert copyright in object code. Most of
the concerns have been with human-readable source code that can be
reverse-engineered or copied. Nevertheless, as object code is merely the
machine-readable form a computer compiled using source code, it could
presumably attract most of the same forms of legal protection as source
code.

3. Program Documentation and Program Output
Two other aspects of a computer program deserve brief mention

before considering in more detail the question of how emerging trends in
programming methodology affect the copyright question. The first of
these is program documentation, including operating manuals and
programmers' notes and annotations to relevant code. 8 The second is the
form of output produced by a program, notably any graphical user
interface (GUI) generated by an operating system or applications
program. A GUI is basically what the user sees on the computer screen
as she executes a program.'" Both of these aspects of programming raise
legal protection concerns, but they are largely outside the scope of this
Article, which focuses on the unsuitability of copyright protection for the
basic building blocks of a program, its source code. They are mentioned
here for completeness and to avoid confusion.

The question about program documentation is relatively simple.
Fixed written documentation will be copyrightable provided it is
sufficiently original for copyright purposes."° ' This may be different for
documentation existing within a program itself. In many computer
languages there is a mechanism for annotating code as a programmer is

C-1366, 2000 WL 631341, at *5 (N.D. Ill. May 8, 2000) (holding that web users had agreed to an
arbitration agreement in a clickwrap license); Julie Cohen, Copyright and the Jurisprudence of Self-
Help, 13 BERKELEY TECH. L.J. lO89, Io9o (1998) (commenting on the use of self-enforcing digital
contracts to protect their "informational rights" as opposed to reliance on copyright law); Tarra
Zynda, Ticketmaster Corp. v. Tickets.com, Inc.: Preserving Minimum Requirements of Contract on the
Internet, 19 BERKELEY TECH. L.J. 495, 505 (2004) (noting that courts have generally upheld the validity
of shrinkwrap and clickwrap licenses applied to computer software).

97. CORNISH & LLEWELYN, supra note I8, at 765.
98. ROBERTSON ET AL., supra note 68, at 104; Menell, supra note 14, at 105I.
99. CAPRON & JOHNSON, supra note 71, at 67-68; Menell, supra note 14, at 1071, io89. An

operating system is computer software that controls the operation of various programs running on a
computer. It allots processing time for each program in turn and can handle multiple users on the same
system. An applications program is a specific program executed by a computer user. Familiar
examples include word processing programs, database programs, spreadsheet programs, etc.

1OO. CAPRON & JOHNSON, supra note 71, at 67-68.
iol. Menell, supra note 14, at 1047-48.

[Vol. 58:205222

IP'S PROBLEM CHILD

writing it. This helps the programmer to remember her thinking behind
the various lines of code.' ' Documentation that simply describes how a
program works is unlikely to be patentable as it is unlikely to rise to the
level of innovation required for patentability, despite the fact that it
might describe or explain something else that is patentable.

Some more difficult legal issues have arisen with respect to GUIs. 3

An obvious example of a GUI with which most of us are familiar is the
design and format of the Windows desktop distributed by Microsoft,
including the design of specific icons, which are small graphic designs a
user clicks with a mouse to access a particular program. As Professors
Cornish and Llewelyn noted, GUIs are "closely allied to programs, but
(at least for copyright purposes) must be considered something apart."4
Professor Menell noted early in the days of the software protection
debates that GUIs may well be protected separately from the source
code that generates them. 5 They might be protected as literary works,
pictorial or. graphic works, or audiovisual works.' 6 The form of
protection will depend on their content.'"

Screen displays of the kinds described above would certainly appear
to meet the requirements of copyrightability provided we accept, as we
did for source code, that they are in a sufficiently permanent form even
though they only appear on screen while a program is being executed.
Like source code, however, and unlike more traditional copyright works,
many GUIs and their constituent elements serve a significant functional
purpose. Computer users become familiar with methods for interacting
with GUIs and there is a value in ease of use and familiarity to
consumers. The ability to click on an icon with a mouse to run a program
has a certain utility and commercial value, in contrast to older form
command line interfaces where users needed to know specific commands
to run programs. A user-friendly GUI certainly makes programs more
appealing to consumers and therefore more commercially valuable.
There is also significant pressure on competitors of an original software
manufacturer to create programs that are similar, in the sense that they

102. See ROBERTSON ET AL., supra note 68, at 3.
103. There is an associated question relating more generically to computer generated outputs from

executing a program. The question has also arisen whether a work can attract copyright protection if it
is computer generated in the sense that there is no actual human author of the work. In the United
Kingdom, the Copyright, Designs and Patents Act, 1988, c. 48, § 9(3) (Eng.), provides that in the case
of computer-generated literary, dramatic, musical, or artistic work, the author is the person who
undertook the arrangements necessary for the creation of the work. See also Copyright, Designs and
Patents Act, 1988, c. 48, § 178 (Eng.) (defining "computer-generated"); CORNISH & LLEWELYN, supra
note 18, at 399.

104. CORNISH & LLEWELYN, supra note 18, at 776.
105. See Menell, supra note 14, at IO89.
Io6. Id.

107. Id.

December 2006]

HASTINGS LAW JOURNAL

function in a similar fashion to existing programs on the market with
which most consumers are familiar. Thus, if most consumers are familiar
with the Windows operating system and its use of graphical features such
as framed windows, drop down menus, point and click commands, and
functions represented by icons, Windows competitors will want to
emulate that functionality in their own screen displays.'

The ultimate questions about copyrightability of screen displays
have not been resolved definitively in any jurisdiction. The judicial
authority, such as it is, has been relatively case-specific, so it is difficult to
extract a general principle on copyrightability of screen displays. It
appears that American courts will only grant "thin" copyright protection
to screen displays essentially amounting to a prohibition against verbatim
copying.'" Professor Leaffer has noted that American courts generally
will only allow protection for the artistic features of a GUI and deny
protection to more clearly functional features."' They have also denied
protection to features that have become industry standards even if they
were arbitrary and fanciful at the time they were originally adopted."' It
is possible that other jurisdictions may ultimately grant broader
intellectual property protection to GUIs. Professors Cornish and
Llewelyn have suggested that English courts may be more flexible in
protecting GUIs than American courts, although to date, the issue has
been considered only in passing."' They also note that screen icons in
particular may be protectible under registered designs law in jurisdictions
that have developed such statutes.1 3

Thus, it is important to appreciate that the law may have to treat
different aspects of computer programs differently. There is, for
example, an emerging legislation and jurisprudence relating to the
protection of traditional copyright works stored digitally, such as digital

Io8. In fact, Microsoft's Windows system effectively "copied" this functionality from Apple, the

corporation that originally developed the windows-based graphical user interface with point and click

commands and drop down menus. Apple Computer, Inc. v. Microsoft Corp., 35 F.3d 1435, 1438, 1446

(9th Cir. 1994). Apple sued Microsoft unsuccessfully for copyright infringement in terms of this alleged

copying. Id. at 1438-39. Apple's suit was unsuccessful because the court held that Apple was really

attempting to claim copyright in functional aspects of its system, which were unprotectible. Id. at 1439;

see also CORNISH & LLEWELYN, supra note 18, at 777.

109. CORNISH & LLEWELYN, supra note 18, at 777 (observing that American courts are not

sympathetic to claims to protect GUIs under copyright law); LEAFFER, supra note 4, § 2.I4[BI[3]

("GUIs have received thin copyright protection that amounts to a prohibition against verbatim
copying.").

I IO. LEAFFER, supra note 4, § 2.14[B][3].
III. Id.
S112. CORNISH & LLEWELYN, supra note 18, at 776.
113. Id. at 776-77. In these jurisdictions, registered designs are a form of statutory generic

intellectual property right that is related to, but distinct from, copyright law. See, e.g., Designs Act,
2003 (Austl.); Registered Designs Act, 1949, 13 & 14 Geo. 6. (Eng.). These statues are much broader
in scope than American designs law, which is limited to the protection of vessel hull designs. 17 U.S.C.
§ 1301(b) (2o06) (defining protected designs).

[V0l. 58:205

IP'S PROBLEM CHILD

music and movies, that must be treated differently from the legal
protection of computer source code."4 Like the GUIs described above,
digital music, movies, eBooks, and the like, raise very different kinds of
copyright concerns than any underlying source code through which they
are produced on a computer system. This Article is concerned with the
legal protection of software code through copyright law. It does not
suggest that outputs of code, such as digital audio and video displays,
should not be protected against copying through aggressive application
of copyright law and associated protections such as those now found in
the anti-circumvention and anti-trafficking provisions of the DMCA."5

This is particularly the case where those outputs are simply digital
versions of the kinds of literary and artistic works that were historically
protected by copyright law in more traditional formats."6

Computer programs break down into a number of distinct elements
that may be separately protected by various aspects of the legal system.
This Article focuses predominantly on source code, and whether it is
finally time to partially or fully scale back the availability of copyright
protection for such code. However, that is not to say that copyright will
not be a viable form of protection for other elements of computer
software, notably various outputs and documentation. It is necessary to
understand this distinction. Not all digital age copyright questions are
about software code. However, some of the more worrying recent digital
copyright questions discussed later in this Article evidence the way issues
about protection of code have become aggregated with questions about
the protection of digital copyright works more generally against
unauthorized access and use.

Eliminating software copyrights, or at least dramatically limiting
their scope, would alleviate some of these concerns and would allow
copyright law to do its job with respect to the kinds of works it is best
suited to protecting-those where the value is in the fixed, literal
expression. Prior to examining these questions in more detail, it is
necessary to consider emerging trends in programming methodology
which in and of themselves suggest that copyright is a less suitable
protection method for software code than it might have been in previous
years.

114. See, e.g., 321 Studios v. Metro Goldwyn Mayer Studios, Inc., 307 F. Supp. 2d 1085, 1092-99
(N.D. Cal. 2004); United States v. Elcom Ltd., 203 F. Supp. 2d i i i i passim (N.D. Cal. 2002); Universal
City Studios, Inc. v. Reimerdes, i i i F. Supp. 2d 294, 322, 323-24 (S.D.N.Y. 2000), affd sub nom.
Universal City Studios, Inc. v. Corley, 273 F.3d 429 (2d Cir. 2001).

115. See 17 U.S.C. § 1201(a)(i)(A), (a)(2), (b)(i) (2006).
116. Some of these concerns have been litigated in recent years under the DMCA. 321 Studios, 307

F. Supp. 2d at 1092-99 (involving trafficking in device capable of circumventing encryption codes
placed on DVD movies); Elcom, 203 F. Supp. 2d at i1i8-I9 (involving trafficking in device that could
circumvent technological protections applied to eBooks); Reimerdes, iii F. Supp. 2d at 303 (involving
trafficking in device that circumvents encryption code placed on DVD movies).

December 2006]

HASTINGS LAW JOURNAL

B. HISTORICAL DEVELOPMENT OF PROGRAMMING STRATEGIES

Over time, the software industry has matured significantly,
impacting the amount of appropriate legal protection necessary for
programmers' efforts. In the latter part of the twentieth century, as the
demand for stand-alone business applications increased, so too did the
need to develop more user-friendly programs. With the business
community as software consumers, computer scientists needed to
improve code-writing strategies to avoid errors and bugs"7 that could not
easily be corrected by average business users. The commercialization of
code also brought with it increased need to protect the commercial value
of the code through legal means.

i. Structured Programming
One major advance in programming in this context was the

development of the modularized "control structure" approach to
programming. This approach allowed enhanced performance and error
testing, along with decreased development time and maintenance costs.'
It largely achieved these aims using the idea that programs should be
based on three simple control structures: sequence, selection, and
repetition."9 The sequence structure in structured programming is the
idea that statements in computer source code are executed one after the
other in a linear fashion.'20 The selection control structure presents a
number of processing options in the code, and the option chosen depends
on the result of a decision criterion. 2 ' People who have looked at source
code might recognize this as the "IF... THEN" types of commands
often seen in such code. The repetition control structure, also often
referred to as looping, is utilized to execute a particular instruction or
instruction set more than once while a particular condition is satisfied.'22

Again, people familiar with source code might recognize this as a
"DO... WHILE" or "DO ... UNTIL" command."3

In the structured programming context, much code will be

117. A computer bug is "an error in a computer program or system." THE OXFORD ENGLISH
DICTIONARY 123 (Della Thompson ed., 2d ed. 1996).

118. ROBERT A. SZYMANSKI ET AL., INTRODUCTION TO COMPUTERS AND INFORMATION SYSTEMS 290

(1988)-
ii9. Id.
120. Id.
121. Id.
122. Id.
123. Technically, there is also a fourth type of control structure which tended to be used more in

early programming than it is today because of its potential to cause problems in execution. This fourth
control structure is known as a "GOTO" statement, which allows a program to "jump" to other points
in the relevant code. Id. Again, those who have looked at source code will probably be familiar with
this idea. However, it can cause problems because it can make programs difficult to follow, and
interfere with the idea of sequence: that is, that you follow the program code from the top to the
bottom in a relatively sequential structure. Id.

[Vol. 58:205

IP'S PROBLEM CHILD

repetitious, and independent reinvention is likely to be common, along
with conscious re-utilization of coding structures. If structured
programmers limit their programming methodologies to those that
involve sequence, selection, and repetition, it is likely that many
programmers will be thinking in the same way and will be reinventing the
wheel to a great extent. The idea behind good programming is not
necessarily to be particularly original and creative, but to be functional
and to reuse similar ideas and structures. This is a bad fit for copyright
law's focus on regulating unauthorized copying and reproductions.

2. Modularization
Another important concept that has been developed in modern

programming theory and practice is modularization. This involves
breaking up sub-tasks within a program into self-contained units or
modules, each of which can be dedicated to a single function.24 This is
useful in complex programming because it simplifies the program
structure, and enables different programmers to efficiently work on
different aspects of the same program.'25 Another benefit of
modularization is that once the discrete modules have been written, they
can easily be understood, reused within the same or another program,
and independently modified if necessary. 26

The idea of modularization provides another indication that
copyright law is not a particularly good fit for modern software products.
One of the key features of good programming today is the ability of
discrete modules to be reused by different people in different contexts
with or without modification.127 This clearly runs counter to the aims of
copyright law, which are to prevent such reproductions without the
authority of the original author. Perhaps this is an overbroad statement
in the commercial software context. It is likely that corporate software
developers would applaud a total ban on a competitor's free use of
modules of their code. However, this is where we see a significant
disconnect between various areas of the software developing community.
In pure computer science terms, the ideas of structured programming
and modularization encourage copying. At least in recent years, using
someone else's module and building on it to create a new program is
what software programming has been about. In fact, the open source
movement encourages copying by providing free access to open source
code, thus enabling programmers to work on improvements. I

2s The

124. ROBERTSON ET AL., supra note 68, at 104.
125. See id.
126. Id.
127. See id.
128. See generally Dennis M. Kennedy, A Primer on Open Source Licensing Legal Issues:

Copyright, Copyleft and Copyfuture, 20 ST. Louis U. PUB. L. REv. 345 (2001); Marcus Maher, Open
Source Software: The Success of an Alternative Intellectual Property Incentive Paradigm, to FORDnAM

December 2006]

HASTINGS LAW JOURNAL

practice of software programming should be better reflected in the legal
protections granted to the commercial software community. Because
there are now many avenues outside copyright law to effectively protect
software code, including patents, modern DRM measures, and restrictive
licenses that are clearly enforceable under contract law,"29 there is no
need for copyright law to protect code.

3. Object-Oriented Programming
A final point to make about recent advances in computer

programming theory and practice relates to the advent of object-oriented
programming. Object-oriented programming further builds on the
structured programming approach and is particularly important for the
creation of large-scale business applications. 3 ' It is a technique that relies
on creating a set of interacting objects rather than a set of interrelated
functions.3' In this form of programming, an object refers to a thing we
might encounter in the real world, such as a file, document, customer
record, or bank account. Objects have various properties including a
name, data with attributes having a value at any given point in time, and
operations or methods that can be performed on the relevant data.'32

Each object may also be an instance of a class of objects.'33 Classes can be
progressively created from other classes by copying some of the
attributes and methods from the parent class.'34 The term "inheritance" is
used to describe a new class of objects taking attributes and methods
from a parent class.'

Without going into unnecessarily complex detail about object-
oriented programming, the idea behind this form of program design is for
the programmer to create a program that uses objects in the same way
that people relate to real world items. For example, just as a bank
account may have certain properties and attributes and may be dealt
with in a certain way in the real world, a similar functionality can be
achieved as part of the program structure. Checking accounts may have
certain similarities to credit accounts, such as account numbers, customer
names, and transaction records, but there may also be differences, such

INTELL. PROP. MEDIA & ENr. L.J. 619 (2000); David McGowan, Legal Implications of Open Source
Software, 2001 U. ILL. L. REV. 241; Stephen McJohn, The Paradoxes of Free Software, 9 GEO. MASON
L. REV. 25 (2000); Miller, supra note 67; Christian H. Nadan, Open Source Licensing: Virus or Virtue?,
so TEX. INTELL. PROP. L.J. 349 (2002); Shawn W. Potter, Opening Up to Open Source, 6 RICH. J.L. &
TECH. 24 (ZOOO); Greg R. Vetter, "Infectious" Open Source Software: Spreading Incentives or

Promoting Resistance?, 36 RUTGERS L. J. 53 (2004).
129. See sources cited supra note 96.
130. ROBERTSON ET AL., supra note 68, at 175.
131. See id.
132. CAPRON & JOHNSON, supra note 71, at 460-63; ROBERTSON ET AL., supra note 68, at 175.

133. ROBERTSON ET AL., supra note 68, at 175.
134. Id. at 176.
135. Id.

[VOL. 58:205

IP'S PROBLEM CHILD

as rules for overdrawing the account. These attributes and methods can
become parts of objects within a program and "credit account objects"
may be developed as a subset of "checking account objects."

Lawyers, lawmakers, and policymakers must understand that one of
the key features of object-oriented design and programming is re-
usability.16 Objects can be reused within the same and different programs
by the same or different programmers. Further, new objects can be
created by inheriting, or copying, attributes and methods from parent
objects as noted above. Again, these may be utilized within the same
program as the parent objects or in different programs written by the
same or different programmers. In terms of the copyright paradigm,
again we see a poor fit between software code and copyright law. While
copyright law is intended to prohibit unauthorized copying of fixed literal
expressions of ideas, the object-oriented programming technique relies
on substantial copying of structures or exact literal expressions of code
within objects.37

C. PROGRAMMING METHODOLOGY AND THE LEGAL PROTECTION OF

SOFTWARE

The software industry's common reuse of code is not affected by
other avenues of legal Rprotection as it is by copyright law. Patents, for
example, protect novel'3 and non-obvious'39 inventions.'4" A patent grant
will provide protection against anyone who attempts to commercially
exploit the function of an invention without the permission of the patent
holder.'4 ' The copying question is irrelevant because the focus of a patent
infringement action is on the function of the code, not the code itself.
Thus, a competitor could legally copy software code if it resulted in a
completely different functional invention. This would be commonplace
in the software industry and would arguably, under current principles, be
an infringement of copyright. However, it would not necessarily amount
to a patent infringement because protecting the nature of an invention
and protecting specific literal elements of code utilized in an invention
are, at least theoretically, two different things.

Additionally, typical incremental developments in programming
make it unlikely that many software programs will rise to the level of
invention required in the patent sense.'42 Thus, patent law does not give

136. CAPRON & JOHNSON, supra note 71, at 463.
137. See, e.g., John Edwards, The Object-Oriented Express, CIO MAG., Nov. s, I995, at 74.
138. 35 U.S.C. §§ 101, 102 (2oo6).
139. Id. § 103.
140. Id. § iol.
141. Id. § 271.

142. Samuelson et al., supra note 13, at 2330-31 ("Innovation in software development is typically
incremental. Programmers commonly adopt software design elements-ideas about how to do
particular things in software-by looking around for examples or remembering what worked in other

December 2006]

HASTINGS LAW JOURNAL

rise to the same over-protection problems as an aggressive application of
copyright law, as long as patents are not granted too freely and
interpreted too broadly.'43

In any event, DRM and contractual measures, for example, coupled
with trade secrecy, likely provide sufficient stand-alone levels of legal
protection for software producers.'" DRM and contractual measures can
provide software developers with relatively inexpensive and immediate
protection for their endeavors, thereby counteracting a number of
potential concerns with scaling back copyright protection. Also, with
recent advances in encryption technologies, it is much easier for software
developers to rely on contract and technology to help protect their work
against unauthorized access and use than it has been in the past.

In the I98os and 1990s, for example, it was not clear what kind of
role patent, trade secrecy, contract, and DRM measures would ultimately
play in the protection of software and its underlying code. Nor was it
clear that trade secrecy could work effectively in this context with DRM
measures and contractual licenses. Subsequent history has shown that
these avenues of protection have certainly proven effective, if not overly
protective in some cases. 45 Maintaining copyright protection for the fixed

programs. These elements are sometimes adopted wholesale, but often they are adapted to a new
context or set of tasks. In this way, programmers both contribute to and benefit from a cumulative
innovation process. While innovation in program design occasionally rises to the level of invention,
most often it does not.").

143. Some would argue that this is what has happened in the United States in the past decade,
although this view may be disputed. See, e.g., Julie Cohen & Mark Lemley, Patent Scope and
Innovation in the Software Industry, 89 CAL. L. REV. 1, 3 (2OO) (noting the high number of software
patents granted in the United States and suggesting new developments in patent policy that could
better support software innovation); Arti Rai, Addressing the Patent Gold Rush: The Role of
Deference to PTO Patent Denials, 2 WASH. U. J.L. & PoL'v 199, 202 (2ooo) (acknowledging the
plethora of high technology patents).

144. See ProCD, Inc. v. Zeidenberg, 86 F.3d 1447 1449 (7th Cir. r996) (upholding clickwrap and
shrinkwrap license applied to computerized database); In re RealNetworks, Inc., Privacy Litig., No. oo-
C-1366, 2ooo WL 631341, at *5 (N.D. I11. May 8, 2000) (holding that web users had agreed to an
arbitration agreement in a clickwrap license); Cohen, supra note 96, at IO9O ("A new wind is blowing
in copyright law. For centuries, authors and their assignees have relied primarily on federal copyright
law to define and protect their legal rights. Suddenly, that may be about to change. New developments
in digital technology offer copyright owners the tantalizing possibility of near-absolute control of their
creative and informational content, even after its delivery to end users, via self-enforcing digital
contracts. Copyright owners, along with purveyors of other (noncopyrightable) informational content,
envision using these contracts to secure-and redefine-their 'informational rights.' Within this vision
of private ordering and technological self-help, contract law rather than copyright law is paramount.
Limits on information ownership set by the public law of copyright are conceived as optional
restrictions that can be avoided using appropriate contractual language."); Zynda, supra note 96, at
504 (describing how courts have generally upheld the validity of shrinkwrap and clickwrap licenses
applied to computer software).

145. This is was argued, for example, in the Eighth Circuit Court of Appeals case of Blizzard v.
BNetD, which involved restrictive contractual licensing and DRM measures bolstered by provisions of
the DMCA. Brief of Defendants-Appellants at 24-39, Blizzard v. BnetD, No. 04-3654 (8th Cir. Jan. 12,
2005). For copies of the court documents in this case, see Electronic Frontier Foundation, Blizzard v.

[Vol. 58:205

IP'S PROBLEM CHILD

literal expression of code in light of these other protection mechanisms is
now not only unnecessary, but leads to undesirable complexity, as well as
potentially misplaced programming incentives.

III. SOFTWARE CODE AND DIGITAL COPYRIGHT LAW

A. THE IDEA-EXPRESSION DICHOTOMY

The main problem with copyright protection in the modern world is
that it potentially leads to over-protection of code, particularly in concert
with other protection mechanisms for software producers. Other than the
overly long duration, 6 of copyright protection in the software code
context, a significant reason for this over-protection lies in the subject-
matter that has been protected by copyright law over the last decade or
so. Copyright law is only intended to protect original literal expressions
of works, and not their underlying ideas. 47 However, software developers
have asserted copyrights in the most minimally original modules of code
in recent years. 4 Courts, potentially confused about the validity of these
copyrights, may be prepared to uphold them.' 49 Even in the absence of
judicial support for such copyrights, the very existence of a copyright in a
program has the potential for a significant chilling effect on innovation in
relevant markets. As previously noted, copyrights are cheaper and easier
to obtain and to register than patents. In fact, in most jurisdictions
outside the United States, copyrights cannot be registered, but are still
valid, effective, and enforceable.'5 °

Interestingly, the possibility of over-protection of software on
copyright subject matter grounds was predicted in the i98os by Professor
Menell, who noted that even CONTU had recognized as early as 1978
that it was going to be impossible to establish a precise line between
copyrightable expression and unprotectible underlying processes." '

Professor Menell argued that the ultimate wisdom of the decision to
protect software code through copyright law would depend on judicial
interpretations of where the line between expression and underlying

BnetD, http://www.eff.org/IP/Emulation/Blizzard- vbnetd (last visited Nov. 5, 2006).
146. As noted above, software protection generally lasts for the author's life plus seventy years in

most jurisdictions. See, e.g., 17 U.S.C. § 302(a) (20o6).
147. This is often referred to as the "idea-expression" dichotomy. See, e.g., Paul I. Kravetz,

"Idea/Expression Dichotomy" and "Method of Operation": Determining Copyright Protection for
Computer Programs, 8 DEPAUL Bus. L.J. 75, 76 (1995).

148. See, e.g., Lexmark Int'l, Inc. v. Static Control Components, Inc., 253 F. Supp. 2d 943 (E.D. Ky.
2003), vacated, 387 F.3d 522 (6th Cir. 2004).

149. There was certainly confusion between the lower court and appeals court in the Lexmark
litigation on this point, with the lower court assuming the relevant lock out code was copyrightable,
253 F. Supp. 2d at 958, and the appeals court disputing this finding, 387 F.3d at 529.

150. See LEAFFER, supra note 4, § 7.1.
151. Menell, supra note 14, at 1047.

December 2006]

HASTINGS LAW JOURNAL

processes was drawn. 5 ' Drawing the line too far in favor of copyright
protection would lead to undesirable software monopolies and would
likely chill competing innovations, whereas drawing the line in the other
direction would provide insufficient protection for initial software
innovations and would discourage many advances in relevant fields.'53

However, it is not only judicial line drawing that has been implicated in
the pattern of over-protection of software. The mere fact that a copyright
claim is made with respect to a particular program can discourage
innovation, particularly if the claim is made by a powerful corporation
with the wherewithal to threaten small-scale competitors with protracted
and expensive copyright litigation.

As long as software copyrighting requires so few costs and
formalities, this specter is very real. Thus, what the software industry
perceived in the i98os as advantages to the use of copyright law, in terms
of costs and formal requirements for copyrighting code, now appear to
be factors that potentially lead to chilling of innovations. As software
programming methodology develops, the increased reliance on concepts
like modularization and object-oriented programming techniques add to
this problem. This is because developments in the industry are
increasingly likely to rely on duplication of existing modules and ideas.
Additionally, as programs are more and more modularized, each module
may be less and less original in the copyright sense.

It is promising that some federal circuit judges have recently begun
to question the copyrightability of certain computer code with respect to
the idea-expression dichotomy. For example, in the appeal decisions in
Lexmark International, Inc. v. Static Control Components'54 and
Chamberlain v. Skylink,'55 some judges expressed concern that too much
code was being copyrighted without any critical evaluation of its
copyrightability. Both of these cases involved "lock out" codes.' 6 Lock
out codes are modules of software code that operate as security systems
attached to a device, such as a computer, printer, or an automobile, to
bar the use of unauthorized components with the product.'57 The
majority in Lexmark noted that such lock out codes generally fall on the
functional idea side of the idea-expression dichotomy, rather than on the
original expression side., 8 Thus, they should not often be granted
copyright protection, either because they are not sufficiently original to

152. Id. at IO48.
153. Id. at 1047-48.
154. 387 F.3d at 542-43.
155. 381 F.3 d ii78, 1201 (Fed. Cir. 2004).
I56. Lexmark, 387 F.3d at 543; Chamberlain, 381 F.3d at 1183.
157. Lexmark, 387 F.3d at 536.
158. Id.

[Vol. 58:205

IP'S PROBLEM CHILD

attract copyright protection ' or because the idea is merged with the
expression, effectively barring copyright protection.'

A number of fundamental problems inherent in modern applications
of copyright law still prevent courts from drawing clear lines between
copyrightable and un-copyrightable code. Although the majority in the
Lexmark appeal was arguably on the right track in terms of their impulse
to limit copyright protection for code where the idea and expression
appear to be merged, in many ways the decision left open more questions
than it answered. For one thing, it is simply not clear on the current state
of the law, even as interpreted by the Sixth Circuit in Lexmark, how and
when the originality and merger questions should be asked in a software
code case. Both the Lexmark majority and Judge Feikens, in his partially
concurring opinion, noted that there appears to be judicial dissonance
regarding when to ask questions relating to the merger of idea and
expression."' Does the merger doctrine operate as an initial bar to
copyrightability, or does it only come into play in answering the
substantial similarity question in an infringement proceeding by way of a
defense?162

This is an important question in the computer code context because
copyrighting code per se, even outside the litigation context, may serve
as an effective bar to innovative competition in the software industry. A
competitor may be wary of arguing a merger or scenes d faire defense in
an infringement proceeding, particularly where she has less financial
resources to hire independent experts than the initial copyright holder. It
might be much more useful for the continued development of the
software industry if there were some ex ante test for copyrightability of
code based on originality and merger grounds. At least in such a
scenario, the burden of proof of originality could shift to the plaintiff.

Even if an attempt were made to shift the burden of proof to the
defendant, the question would arise as to how to develop appropriate
guidelines to determine copyrightability on originality and merger
grounds. Easily quantifiable factors such as the length of a particular
program could not serve as determinative guidelines here. As noted in
Lexmark, brief programs may reveal high levels of creativity in their
expression'63 Conversely, lengthy programs consisting of standard
software modules may not reveal particularly high levels of creativity.
Furthermore, even if some effective guidelines could be developed for
determining originality, the application of these guidelines may create

159. Id. at 536-37 (describing the "originality" criterion for copyright law as set out by the
Supreme Court in the Feist case).

I6o. Id. at 536 (describing the basic merger problem with respect to lock out codes).
161. Id. at 535; id. at 556-59 (Feikens, J., concurring in part and dissenting in part).
162. Id. at 538-39 (majority opinion).
163. Id. at 542.

December 2006]

HASTINGS LA W JOURNAL

perverse incentives in programming.
If, for example, code needed to be expressed in a more convoluted

manner to pass the originality test for copyrightability, programmers may
waste time on writing code with more expressive bells and whistles that
does not function any more efficiently, or that perhaps runs less
efficiently, than a less "original" alternative. Again, this evidences how
poor a fit copyright law is for code. Copyright focuses on original
expression while code is about efficient functioning. Even an approach
that applies the originality standards more rigorously to code than is
currently the case would run the risk of creating all the wrong incentives
in the software industry.

There may be some cases in which the efficiency concerns are so
narrow that there are only one or two options for writing certain code,' 64

and the copyrightability question might be more easily answered in these
cases. As suggested in the Lexmark case, this may be so with respect to
many lock out codes.' 6' However, the ease with which these few cases
were handled does not solve the chief problem. With programming
methodology moving toward modularization and object-oriented
concepts, it is counterintuitive to continue relying on a legal protection
that is a poor fit for the realities of the industry, and that potentially
emphasizes the wrong incentives.

Because copyright protects the wrong aspects of software, its literal
expression rather than its underlying utility, courts have been faced with
the dilemma identified by Professor Menell many years ago: judges have
to either interpret copyright laws too broadly and risk over-protection, or
too narrowly and risk under-protection. '66 This may have been regarded
as a necessary evil at the time Congress adopted the policy of favoring
copyright protection for code, but it is no longer necessary in light of
subsequent developments in law and technology. Trade secret law,
augmented by modern DRM measures and contractual licensing can now
provide effective protection for software in ways not previously possible.
Patents should also have some role to play here, not in protecting specific
iterations of code, but in protecting software related inventions that truly
are novel and non-obvious.'67 Taking copyright out of the picture and re-
focusing on these alternative protection avenues for software would be
preferable to straining the boundaries of copyright law.

If copyright law is retained with respect to software code,
significantly more work needs to be done to resolve the originality and
merger questions. This work should not be left to the judiciary when a

164. See, e.g., Computer Assocs. Int'l v. Altai, Inc., 982 F.2d 693, 708 (2d Cir. 1992) .

165. Lexmark, 387 F.3d at 536.
166. Menell, supra note 14, at 1047-48.
167. See Cohen & Lemley, supra note 143.

[Vol. 58:205

IP'S PROBLEM CHILD

dispute arises. It should be dealt with by Congress or the Copyright
Office, and should be informed by experts in the computer science field.
This approach may look more broadly at developments in computer
programming methodology, rather than focus on specific issues arising in
particular cases. Additionally, an ex ante approach to originality and
merger could be developed as a result of such an inquiry. This could
avoid the chilling effect created when software developers can register
virtually any code at the Copyright Office.

B. DIGITAL RIGHTS MANAGEMENT AND THE DMCA

A more recent development in twenty-first century copyright law
that affects the software copyright question is the enactment of the anti-
circumvention and anti-trafficking provisions of the DMCA.'6 s These
provisions are intended to bolster DRM measures applied to digital
copyright works to control unauthorized access to and use of those
works.' 69 The relevant provisions of the DMCA create civil and criminal
liability for circumventing an access-control measure,'70 and for
trafficking a device that can circumvent an access or copy control
measure."' These provisions have generated some criticism, particularly
with respect to their impact on otherwise legitimate uses of digital
copyright works, such as fair use.'72 However, their aim has been to stem

168. 17 U.S.C. § 1201 (2oo6).
169. See, e.g., C.J. Alice Chen & Aaron Burstein, The Law and Technology of Digital Rights

Management: Forward, i8 BERKELEY TECH. L.J. 487, 489 (2003) ("[Digital Rights Management]
systems fall within the category of 'technological protection measures' that the Digital Millennium
Copyright Act (DMCA) explicitly protects against circumvention. Congress' stated goal, in granting
copyright holders a right of access to their works, was to promote the emerging role of digital
technology in commerce without 'affect[ing] rights, remedies, limitations, or defenses to copyright
infringement, including fair use.' The DMCA itself, however, does not prescribe any technological
safeguards of these rights, remedies, limitations, and defenses, nor does it excuse users who circumvent
access controls to make lawful use of copyrighted content. The DMCA thus grants copyright holders
broad leeway to encode access and usage policies into DRM systems that may effect a balance of
rights quite different from the one found within traditional copyright law." (citations omitted)).

170. 17 U.S.C. § i2oi(a)(i)(A). There is no sanction on circumventing a copy control measure
(compare to an access control measure). This is a legislative attempt, along with § 12oi(c)(1), to
preserve fair use under the DMCA. For a more detailed discussion of the limitations of fair use in this
context, see Lipton, supra note 59, at 531-36; R. Anthony Reese, Will Merging Access Controls and
Rights Controls Undermine the Structure of Anticircumvention Law? 18 BERKELEY TECH L.J. 61 9

(2003); Pamela Samuelson, Intellectual Property in the Digital Economy: Why the Anti-Circumvention
Regulations Need to be Revised, 14 BERKELEY TECH. L.J. 519, 548-54 (999) (providing examples of the
relationship between trafficking in circumvention devices and circumvention conduct per se in cases
where the circumventor does not necessarily have the technological means to create a circumvention

device to make a fair use of a relevant work); id. at 557 (suggesting that the anti-trafficking provisions
of the DMCA should be amended to preserve the ability to manufacture a circumvention device for
legitimate uses, including fair use).

171. 17 U.S.C. § I201(a)(2), (b)(I).
172. See, e.g., Jacqueline D. Lipton, Solving the Digital Piracy Puzzle; Disaggregating Fair Use

from the DMCA's Anti-Device Provisions, 19 HARV. J.L. & TECH. It1 (2005); Lipton, supra note 59, at
531-36: Reese, supra note 17o; Samuelson, supra note 170, at 548-54 (providing examples of the

December lOO6]

HASTINGS LAW JOURNAL

the tide of digital copyright piracy,'73 particularly with respect to digital
works such as eBooks,'74 digital music, and digital movies.'75 This seems
reasonable in light of the fact that the same technology that enables
digital content industries to quickly and cheaply distribute high quality
digital copies of their works to consumers also enables digital copyright
pirates to do the same thing."6

However, some problems arise when these provisions of the DMCA
are utilized to protect copyrighted software code. Putting to one side the
question whether copyright effectively protects the valuable elements of
software code, there is the additional problem that software code is
incidentally incorporated into physical products such as automotive
parts, audio-visual equipment, computer hardware, and even standard
electrical appliances.'77 Some cases have arisen recently in which
manufacturers of physical goods incorporating software code have
attempted to utilize the DMCA to restrict competition for replacement
goods in a downstream market. 8 This is an issue that does not arise with
other kinds of digital copyright works because they are not functional in
the same way that software code is functional. Unlike software code,
digital music, movies, and books are basically digitally stored analogues
of traditional versions of those works stored in paper, celluloid, or
magnetic tape formats. Computer software code is utilitarian and does
not represent an artistic or literary endeavor in the same way as these
other works. One is much more likely today to find computer code
within various tangible utilitarian products such as garage door

relationship between trafficking in circumvention devices and circumvention conduct per se in cases
where the circumventor does not necessarily have the technological means to create a circumvention
device to make a fair use of a relevant work); id. at 557 (suggesting that the anti-trafficking provisions
of the DMCA should be amended to preserve the ability to manufacture a circumvention device for
legitimate uses, including fair use).

173. ELECTRO NIc FRONTIER FOUNDATION, supra note 60, at 1 (describing that the aim of the DMCA
was to prevent circumvention of digital piracy protections attached to copyright works); Burk, supra
note 53, at 1135 (noting that the legislative aims behind these provisions were to prevent piracy in
digital copyright works).

174. United States v. Elcom Ltd., 203 F. Supp. 2d iiII, 1II8-I9 (N.D. Cal. 2002) (involving
trafficking in a device that could circumvent technological protections applied to eBooks).

175. 321 Studios v. Metro Goldwyn Mayer Studios, Inc., 3o7 F. Supp. 2d io85, 1092-99 (N.D. Cal.
2004) (involving trafficking in a device capable of circumventing encryption codes placed on DVD
movies); Universal City Studios, Inc. v. Reimerdes, iiI F. Supp. 2d 294, 322-24 (S.D.N.Y. 2000), affd
sub nom. Universal City Studios v. Corley, 273 F.3d 429 (2d Cir. 2001) (involving trafficking in a
device that circumvents encryption code placed on DVD movies).

176. A similar point was made recently by the Supreme Court in the digital file-sharing context.
Metro-Goldwyn-Mayer Studios, Inc. v. Grokster, Ltd., 125 S.Ct. 2764, 2775 (2005) (noting that digital
distribution mechanisms enable identical copies of a protected work to be made very easily).

177. See, e.g., UNIF. COMPUTER INFO. TRANSACTIONs AcT § 102 cmt. 7 (amended 2002), 7 U.L.A. pt.
II, at 204 (2002) (noting that even toasters may contain microprocessors in modern commerce).

178. See, e.g., Chamberlain Group, Inc. v. Skylink Techs., Inc., 292 F. Supp. 2d 1023, 1046 (N.D. Ill.

2003), affd, 381 F.3d 1178 (Fed. Cir. 2004); Lexmark Int'l, Inc. v. Static Control Components, Inc., 253
F. Supp. 2d 943, 946-47 (E.D. Ky. 2003), vacated, 387 F.3d 522 (6th Cir. 2004).

[VOL. 58:205

IP'S PROBLEM CHILD

openers,'79 laser printers, and associated printer toner cartridges'" than in
the past.

Manufacturers of these devices have argued that where they have
used a DRM measure to tie a replacement part, like a printer toner
cartridge, to a particular physical good, like a printer, they should be able
to avail themselves of the DMCA to prevent unauthorized access to, or
use of, code stored within either or both devices. In the Lexmark
litigation, for example, Lexmark had allegedly inserted copyrighted
computer code both within its toner cartridges and associated printers." '

One of the functions of the code in the cartridges was to ensure that only
authorized Lexmark cartridges could be operated within particular
Lexmark printers. I"2 This was achieved by utilizing two computer
programs, a Toner Loading Program (TLP) inserted into printer toner
cartridges, and a Printer Engine Program (PEP) located on the hard
drive of the relevant computer printers.' The TLP operated as a lock
out code to ensure that no unauthorized cartridges would work within a
relevant printer. s

8 It did this by exchanging data with the PEP, so the
PEP could authenticate the authorized cartridge before anything could
be printed using the cartridge. 5

To date, Lexmark has failed both in copyright infringement claims
against a competitor, Static Control Components (SCC), and in DMCA
claims. The copyright claims failed because the Sixth Circuit Court of
Appeals was not convinced that the TLP, the code within the cartridges
that SCC copied, was copyrightable.' 86 Either the idea had merged with
the expression 8

, or the code was insufficiently original to attract
copyright protection. 1s The DMCA claims failed because the appellate
court was not convinced that the lock out code in the printer toner
cartridge was an effective technological protection measure required for
a successful action.'s9 Even though the TLP housed in the Lexmark
cartridges functioned as a lock out code to prevent the operation of the
printer with an unauthorized cartridge inserted, the allegedly protected
copyright work, a PEP residing inside the relevant printers, was
accessible in other ways. Anyone who lawfully purchased a relevant

179. Chamberlain, 292 F. Supp. 2d at 1046.
i8o. Lexmark, 253 F. Supp. 2d at 946.
181. Lexmark Int'l, Inc. v. Static Control Components, Inc., 387 F-3d 522, 529-30 (6th Cir. 2004).

182. Id. at 530.
183. Id. at 529-30.
184. Id. at 530.
185. Id. For a more detailed discussion of this point, see Lipton, supra note 59, at 499-501.
186. Lexmark, 387 F.3d at 534-37.
187. Id. at 534-36.
I88. Id. at 536-37.
189. Id. at 546-49.

December 2006]

HASTINGS LAW JOURNAL

printer could access the PEP code within the printer.'"°

However, the problem does not end with Lexmark. It would be very
simple for a manufacturer to get around the reasoning in the Lexmark
decision by better protecting the relevant computer code from
unauthorized access or use. If the PEP had been properly encrypted in
Lexmark, the result may have been very different. If, for example,
purchasers of Lexmark printers were unable to access, read, copy, or
distribute the PEP from the hard drive of the printer due to additional
encryption applied within the printer hardware itself, the PEP may have
been protected by an effective technological protection measure as
required by the legislation. 9'

In such a case, if a competitor such as SCC had attempted to
circumvent the technological protection in the creation of an
interoperable competing toner cartridge, a DMCA claim may have
succeeded. This point was made forcefully by Judge Merritt in his
concurring opinion in Lexmark:

We should make clear that in the future companies like Lexmark
cannot use the DMCA in conjunction with copyright law to create
monopolies of manufactured goods for themselves just by tweaking the
facts of this case: by, for example, creating a Toner Loading Program
that is more complex and "creative" than the one here, or by cutting
off other access to the Printer Engine Program."'
Judge Merritt's concerns were twofold. First, he was concerned

about the reach of traditional copyright law and its potential to protect
relatively unoriginal code like the basic lock out program.'93 Second, he
was worried about the potential for manufacturers of physical goods to
artificially lock up computer code incorporated into those products in
order to run DMCA arguments to prevent downstream competition in
after-markets for replacement parts."9 Overall, he was worried that the
reasoning of the majority did not go far enough toward preventing these
outcomes.'95 In this vein, he advocated that the DMCA should be
interpreted in the future in a manner that makes it clear that the statute
requires plaintiffs to show a purpose to pirate the defendant's copyright
work.'6 Although this is clearly a laudable suggestion, it is not what the

19o. Id. at 546 ("Anyone who buys a Lexmark printer may read the literal code of the Printer
Engine Program directly from the printer memory, with or without the benefit of the authentication
sequence, and the data from the program may be translated into readable source code after which
copies may be freely distributed.").

191. Lipton, supra note 59, at 506.
192. Lexmark, 387 F.3d at 551 (Merritt, J., concurring).
193. Id. at 551-52.
194. Id. at 552.
195. Id. at 551-52.
196. Id. at 552-53. For alternative approaches to this problem, see generally Burk, supra note 53;

Lipton, supra note 59.

[Vol. 58:205

IP'S PROBLEM CHILD

statute currently says and there is no requirement for future courts to
interpret it in this way.

Obviously, as with traditional copyright infringement actions, there
are some statutory and common law defenses available to those accused
of DMCA infringement in such cases. The defendant in Lexmark argued
fair use'" and also suggested that the plaintiff had engaged in copyright
misuse.'9 These defenses were not discussed in great detail by the
appeals court as the majority was not convinced that Lexmark could
successfully sustain its copyright and DMCA infringement actions in any
event.'99 SCC also raised the statutory interoperability defense from the
DMCA, but again this was not pursued in detail by the judges."c°

In any event, reliance on these defenses in such cases raises the same
problem as asking defendants to rely on similar defenses in traditional
copyright infringement actions involving computer code. It puts the
burdens of proof in the wrong places and potentially stifles innovation in
competing markets, particularly in markets for physical goods that are
only tangentially associated with copyrightable subject matter. It may be
far better to bar copyright and DMCA actions altogether in these kinds
of cases on the basis that the cases are not really about protecting
copyright works. Alternatively, as suggested by Judge Merritt, even if the
relevant code is potentially copyrightable, there should be at least a
presumption against a DMCA action unless the plaintiff can establish a
clear purpose to pirate on the part of the defendant."'

Taking this course and interpreting the DMCA in the way suggested
by Judge Merritt, or alternatively amending the legislation to incorporate
his presumption °. may well resolve this problem in practice, but it does
not deal with the problem at its foundation. The root of this particular
problem is the copyrightability of software code per se. If code were not
copyrightable, it would not be possible for manufacturers of physical
goods to incorporate functional code within those goods and then claim
both copyright and DMCA infringements against competitors trying to
compete in after-markets for replacement parts.

197. See 387 F.3d at 544 (Merritt, J., concurring) ("In view of our conclusion on this preliminary-
injunction record that the Toner Loading Program is not copyrightable, we need not consider SCC's
fair-use defense.").

198. Lexmark Int'l, Inc. v. Static Control Components, Inc., 253 F. Supp. 2d 943, 965-66 (E.D. Ky.
2003), vacated, 387 F-3d 522 (6th Cir. 2004). The copyright misuse defense was not discussed in the
appeal judgment.

199. Lexmark, 387 F.3d at 550-51.
200. Id. at 551.
201. Id. at 552 (Merritt, J., concurring) ("[A] better reading of the statute is that it requires

plaintiffs as part of their burden of pleading and persuasion to show a purpose to pirate on the part of
defendants.").

202. For a similar suggestion regarding a legislative presumption that protection of a copyright
work is a central commercial concern of the plaintiff, see Lipton, supra note 59, at 521-28.

December 2006]

HASTINGS LAW JOURNAL

Both copyright law and the DMCA can potentially operate
effectively to protect digital copyright works that are truly digital
analogues of existing creative works. However, prior to the digital
revolution, this legislation did not work well with respect to software
code. Code is utilitarian in character and its very functionality not only
makes copyright law a bad fit for protecting it, but also creates
unintended negative consequences as copyright law matures in the digital
age to protect other forms of digital copyright works against
unauthorized access and use. It was not the intention of the drafters of
the DMCA to allow manufacturers of printers and toner cartridges to
utilize the anti-circumvention provisions to impinge on unwanted
competition in downstream after-market replacement parts." However,
the copyrightability of software code potentially leads to such outcomes.

Although there are clearly a variety of quick fixes to this practical
problem, such as judicial or legislative presumptions against the
operation of the DMCA in these cases,2" it is more logically satisfying
and practically appropriate to deal with this problem at its heart. In other
words, it is the copyrightability of code per se that creates the potential
problem of utilizing the DMCA to prevent competition in downstream
markets for tangible goods incorporating code. Even though code
resembles a traditional copyright work because it is written in a fixed
literal format, it is clearly not traditional copyright subject matter
because its value is not in its expression."° Eliminating, or significantly
scaling back, copyright protection for code could curtail problems that
arise as copyright law becomes more stringent in its protection of other
forms of digital works, such as digital music, movies, and literature.

IV. ALTERNATIVES TO COPYRIGHT PROTECTION

A. TRADE SECRECY IN THE TWENTY-FIRST CENTURY

This leads us to the question of whether copyright protection for
computer software code should continue at all. Removing copyright
protection altogether for code would clearly be a radical move. The open
source movement relies heavily on its ability to copyright code and to
utilize restrictive licensing provisions, such as the General Public License
(GPL)' 6 to protect the open nature of the code. As Professor Ginsburg

203. Burk, supra note 53, at 1135.
2o4. Lexmark, 387 F.3d at 552-53 (suggesting judicial imposition of "purpose to pirate"

presumption where plaintiff must demonstrate purpose to pirate on part of defendant before burden
of proof shifts to defendant to raise available statutory defenses); Burk, supra note 53 (discussing the
development of "anti-circumvention misuse" defense); Lipton, supra note 59, at 521-28 (suggesting
legislative imposition of presumption that plaintiff must demonstrate that protection of copyright work
is a substantial commercial concern in the matter before burden shifts to defendant).

205. Menell, supra note 14, at 1047-48.
2o6. The GPL is probably the most well known form of open source license. See Miller, supra note

[Vol. 58:205

IP'S PROBLEM CHILD

noted many years ago, copyright is also accepted as an international
medium for code protection."° Therefore it is not just a question of what
the United States will do, but also of how that will mesh with the law in
other countries.

On the other hand, just because something is widely adopted and
accepted does not mean that it should be retained, particularly if it is
causing negative practical consequences. Additionally, there is now the
likelihood that software is effectively protected in most cases without
copyright. We may simply be so used to assuming the existence of, and
need for, copyright protection, that we have failed to notice that other
measures now provide software manufacturers with more than enough
protection.

When Congress decided to encourage copyright protection for
software, it was not clear what kind of role patent law, trade secret law,
contract law, and DRM measures would play in the protection of
valuable software. That picture is much clearer today. Arguably, patents
have been over-utilized in relation to software-related innovations.2

There has certainly proven to be little difficulty, in the United States at
least, in patenting software-related inventions."° Of course, patents do
not protect the literal expression of a programmer's idea, nor do they
protect software related inventions that are not sufficiently innovative.
They only protect software as part of a novel and non-obvious invention.
It is arguable that there is still a need for some protection from those
who might duplicate code, utilize it, and distribute it without the
authorization of the original developer.

However, the question remains as to whether copyright protection is
the answer here. Clearly copyright law is primarily concerned with
preventing unauthorized duplications and disseminations of a fixed
literal work. With respect to computer code, the same, and perhaps even
more effective, protections can be achieved through the use of trade
secrecy augmented by DRM measures and contractual licenses.
Legislation similar to the Computer Fraud and Abuse Act (CFAA) is
also a viable alternative." ' In the modern world, these avenues of

67, at 496. It is the "general public license" originally promulgated by the GNU project. Id. at 496-97.

207. Ginsburg, supra note 15, at 2559-60.
208. The author is therefore not arguing that patents are a "silver bullet" to answer all the

problems in relation to the potential over-protection of software by intellectual property law.
However, the effectiveness-or over-effectiveness-of patents for software protection does suggest
that copyrights are an unnecessary addition to the intellectual property matrix for software and that
copyrights could easily be scaled back or eliminated even if additional limitations are also required for
patent law.

209. Cohen & Lemley, supra note 143; Rai, supra note 143; World Intellectual Property

Organization, supra note 95 ("Today, there are an increasing number of software and business
methods which are protected by patents in the United States ").

210. 18 U.S.C. § 1030 (2oo6). The CFAA prevents unauthorized access to computer systems and

December 2006]

HASTINGS LAW JOURNAL

protection would likely fill in any gaps left by patent protection and,
when compared with copyright protection, more appropriately focus
upon the valuable functional elements of software code.

In the early days of copyright protection for software code, trade
secrecy was thought to be problematic in the code context because of the
ease with which trade secret status could be lost."' In the days when
DRM measures were not particularly sophisticated and, in many cases,
were non-existent, and the enforceability of restrictive contractual
licenses was unclear, trade secrecy did not seem an appropriate avenue
of protection for code. However, if we now assume that a software
developer who develops commercially valuable code will not disseminate
it without first encrypting it and imposing easily enforceable licensing
provisions, trade secrecy may be more useful than we thought in the
I98Os and 199os.

If computer software code can be effectively kept secret by utilizing
DRM measures and restrictive contractual provisions, it clearly meets
the definition of trade secret in the Uniform Trade Secrets Act (UTSA)
and thus can be protected against unauthorized misappropriation under
that legislation. 12 The UTSA definition covers "information, including a
formula, pattern, compilation, program, device, method, technique, or
process" ' 3 if the information "derives independent economic value,
actual or potential, from not being generally known to, and not being
readily ascertainable by proper means by, other persons who can obtain
economic value from its disclosure or use....4 It also requires that the
information be "the subject of efforts that are reasonable under the
circumstances to maintain its secrecy.....5 A similar definition of trade
secret appears in the federal Economic Espionage Act of 1996 (EEA),2' 6

which imposes criminal liability for certain trade secret
misappropriations."7

In the i98os and early 199os it may have been very difficult for
software manufacturers to effectively, not to mention cost-effectively,
impose DRM measures to prevent a program from being readily
ascertainable by others. However, the balance has shifted in the last
decade or so. If a relatively sophisticated DRM measure augmented by a
clearly restrictive contractual license is attached to a program, it should

unauthorized transmission of data within those systems. See infra Part IV.B.
211. Menell, supra note 14, at 1072.
212. UNIF. TRADE SECRETS AcT § 2 (2005) (injunctive relief for misappropriation of a trade secret);

id. § 3, 14 U.L.A. 633 (damages for misappropriation of a trade secret).

213. Id. § 1(4) (emphasis added).

214. Id. § I(4)(i) (emphasis added).

215. Id. § 1(4)(ii).
216. 18 U.S.C. § 1839(3) (2006).

217. Id. §§ 1831-1832.

[Vol. 58:205

IP'S PROBLEM CHILD

provide a significant level of practical protection to a software
manufacturer. Additionally, it should readily satisfy the trade secret
definitional requirement of taking reasonable efforts to maintain the
secrecy of valuable information. Reliance on trade secrecy augmented by
DRM and contractual measures also focuses more realistically on what is
economically valuable about software, the functional element of the
relevant information, rather than its literal expression.

Trade secrecy perhaps has the perceived disadvantage that some
measure of reverse engineering of trade secrets has generally been
tolerated, provided that the original item containing the protected
information was legally obtained, and the reverse engineering is not in
breach of contract."' However, with improved DRM and contractual
protections in the software context, this should be no more of a problem
in the software code context than in relation to any other type of trade
secret. In any event, as previously noted, reverse engineering of
copyright-protected software code has also been tolerated under
copyright law, either as an example of a permitted fair use of a copyright
work"9 or through black box techniques that do not technically involve
copying.22 Thus, trade secrets are no more problematic than copyrights
in this context.

Regarding the possibility that digital copyright law, particularly in
the guise of the DMCA, has the added advantage of protecting a
software manufacturer against unauthorized access and use of an
encrypted program, today's trade secret laws may provide the answer,
given that secrecy can be adequately protected in practice. The UTSA
and EEA are aimed at preventing and imposing civil and criminal
sanctions on the failure to prevent, unauthorized access to and use of
protected information. The UTSA, for example, prohibits unauthorized
misappropriation of a trade secret.2 ' In this context, misappropriation is
defined to include both unauthorized acquisition of a trade secret," '

which is presumably the same thing as unauthorized access to the
relevant information, and unauthorized disclosure or use of a trade
secret. "3 The criminal sanctions for trade secret theft in the EEA are
similarly broad. 4 If these provisions cover the same things as the anti-
circumvention provisions of the DMCA in the copyright context, but
with a focus on protecting utilitarian aspects of information, is there any

218. I ROGER M. MILGRIM, MILGRIM ON TRADE SECRETS § I.O5[2] (2004).

219. Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 152o-28 (9 th Cir. 1993); LEAFFER, supra

note 4, § 1O.13; see also LEMLEY ET AL., supra note 34, at 136-38.
220. Samuelson et al., supra note 13, at 2317-18.
221. UNIF. TRADE SECRETS ACT § 2(a), 14 U.L.A. 619 (2oo5).
222. Id. § i(2)(i), 14 U.L.A. 538.
223. Id. § 1(2)(ii) (emphasis added).
224. I8 U.S.C. §§ 1831-1832 (2oo6).

December 2oo6]

HASTINGS LAW JOURNAL

reason to retain incidental copyright protection for software to prevent
unauthorized access and use of code under the DMCA? Probably not,
particularly given the demonstrable practical problems this can create.

One could argue that trade secrecy does not help the open source
movement because the participants do not wish to retain secrecy in their
code and therefore cannot use trade secret laws as an alternative to
copyright protection. The answer is obvious here. It is simply necessary
to look at the reason why the open source movement relies on copyright
law. Copyright is not intended to protect the commercial value of
software, but rather to serve an identification function for code in the
open source context. Copyright basically describes or identifies the
property right to which a relevant open source license will attach. Thus,
copyright works in concert with contract to ensure that code is not over-
propertized in the open source context.

Creating an intellectual property right to prevent over-
propertization or over-commercialization of a particular item is not the
aim of copyright law in the context of software code. If the aim of the
open source movement is to use copyright to establish the boundaries of
a particular item of intellectual property subject to an open source
license, it should be possible to substitute another kind of identification
mechanism in this context. In fact, it is questionable whether the open
source movement needs any kind of specific legislative intellectual
property right to achieve these ends. Would it not be possible for the
participants simply to identify the relevant code in a given contractual
license without the need for a separate, stand-alone property right to
identify the asset in question? It is not immediately clear what copyright
gives the open source movement that a well drafted stand alone license
would not give to the movement, other than a shorthand way to refer to
a particular program. Perhaps the ability to register an open source
program on the Copyright Register is helpful in terms of identifying
ownership of the relevant rights. Nevertheless, it is not essential in this
context. In fact, most jurisdictions outside the United States do not have
a copyright register and so cannot rely on copyright registration as
evidence of ownership of a copyright work, even in the open source
context.225

It is arguable that the open source movement does need some kind
of intellectual property right on top of contractual licensing provisions to
cover situations where it is difficult to establish contracting parties, and
there is a concern that someone has used the code inappropriately. An
example would be where a proprietary software manufacturer has found
some open source code on the Internet, copied it, and propertized it
within a commercial product without ever having seen the contractual

225. See LEAFFER, supra note 4, § 7.1.

(Vol. 58:205

IP'S PROBLEM CHILD

license. This might happen if the code is accidentally distributed or
posted on a website without the relevant contractual provisions. This
might be a situation where either a special subset of copyright should be
retained, or, even more appropriately, where a new sui generis right
might be developed that meets the needs of the open-source community.
Such a new right might encompass both the identifactory functions noted
above and an anti-commercialization right enforceable against any
downstream user of the code regardless of whether she can be identified
as a contracting party with respect to the code. Such a right would
effectively enable licensing terms to run with the property right and bind
anyone who used or improved the code. It would be an example of using
a property (or quasi-property) right to avoid undesirable
commercialization or monopolization of code."6

B. THE COMPUTER FRAUD AND ABUSE ACT AND COMPUTER TRESPASS

Other legal protection avenues for software that potentially augment
the provisions of the UTSA and EEA might also include the CFAA.
Although the CFAA deals mainly with fraudulent activities relating to
computers, it is drafted in relatively broad terms and, depending on how
the legislation is judicially interpreted, may well cover unauthorized
access to, and use of, computer software, at least in some circumstances.

The provisions of the CFAA most likely to be relevant in this
context are 18 U.S.C. § IO3o(a)(2)(C), (a)(4) and (a)(5). These are all
offenses that deal with combinations of unauthorized access to a
computer and unauthorized transmission of data from a computer system
that cause damage or further a fraudulent activity. The legislation is
fairly vague as to the meanings of fraud and damage in this context,
although financial damage is contemplated in relation to some of the
offenses set out in the legislation."' The basic definition of damage is
somewhat broader. Damage under the CFAA generally means: "any
impairment to the integrity or availability of data, a program, a system,
or information."2' This may or may not include commercial damage
suffered by a software developer as a result of a misappropriation of
code by a competitor, depending on whether a term such as integrity is
interpreted as including integrity of financial value or rather is relegated
merely to the physical integrity of the code.

226. On the ability to use property or quasi-property rights to avoid monopolies in information

property, see generally Michael Carrier, Cabining Intellectual Property Through a Property Paradigm,
54 DUKE L.J. 1 (2004); Jacqueline Lipton, Information Property: Rights and Responsibilities, 56 FLA. L.
REV. 135 (2004).

227. For the purposes of the offenses relating to unauthorized access to a protected computer or
unauthorized transmission of data from a computer that cause damage in i8 U.S.C.
§ 103o(a)(5)(A)(i)-(iii) (2oo6), "damage" is defined in § 1o3o(a)(5)(B)(i) to include: "loss to i or more
persons during any i-year period... aggregating at least $5,00o in value."

228. Id. § I03O(e)(8).

December 2006]

HASTINGS LAW JOURNAL

Similar points may be made about the potential application of the
developing area of computer trespass" ' to the protection of software
code. Most of the computer trespass cases to date, "3 ' such as the CFAA
cases, have focused on unauthorized access to computer systems either to
access specific data"3' or, in one recent case, to distribute information
within an organization. '32 However, in the absence of copyright
protection, the CFAA and the evolving computer trespass doctrines may
help software developers protect the integrity of their valuable code.

In any event, as interesting as this idea may be in theory, it is
probably not necessary in practice because, as previously noted, the law
of trade secrets, augmented by enforceable contractual licenses and
effective DRM measures, should be able to do the work currently done
by copyright law with respect to the legal protection of software code.
Trade secrecy, bolstered in this way by contract and DRM, should
actually do a better job here than copyright law because it protects the
valuable functional aspects of the code and not merely its literal
expression. It also does not run into difficult questions of where to draw
the line between protected expression and unprotectible ideas. Trade
secrecy law will likely protect the actual ideas and information in
question provided that reasonable efforts have been made through
effective DRM and contractual measures to maintain the secrecy of the
relevant code.

CONCLUSION

In the i98os and early 199os there was much debate and
disagreement about the appropriateness of relying on copyright law to
protect valuable commercial interests in software code. As history has
shown, Congress resolved the matter in favor of copyright protection.
However, the reasons for this decision no longer exist. Copyright law is a
poor fit for the needs of software developers. Additionally, because of its
lack of cost, significant formalities, and its lengthy duration, the specter
of over-protection of software code is raised by copyright law. 33

229. See generally Dan L. Burk, The Trouble with Trespass, 4 J. SMALL & EMERGING Bus. L. 27
(2000).

230. See eBay, Inc. v. Bidder's Edge, Inc., too F. Supp. 2d io58, i069-70 (N.D. Cal. 2ooo) (raising
"chattel trespass" arguments in relation to computer systems based on personal property rights in
servers); CompuServe Inc. v. Cyber Promotions, Inc., 962 F. Supp. 1015, 1021 (S.D. Ohio 1997)
("[E]lectronic signals generated and sent by computer have been held to be sufficiently physically
tangible to support a trespass cause of action.").

231. See In re Doubleclick Inc. Privacy Litig., 154 F. Supp. 2d 497, 503 (S.D.N.Y. 2001); Shurgard
Storage Ctrs., Inc. v. Safeguard Self Storage, Inc., 119 F. Supp. 2d 1125, 1124 (W.D. Wash. 2000).

232. Intel Corp. v. Hamidi, 71 P.3d 296, 299 (Cal. 2003) (involving spam emails sent by ex-
employee to current employees of a corporation).

233. The specter of over-protection is also potentially raised by patent and trade secrecy.
However, at least these protection methods require somewhat more effort on the part of the code

owner over and above creating the code per se.

[Vol. 58:205

IP'S PROBLEM CHILD

Although copyright is only intended to protect original expressions and
not underlying functionality or ideas, the ability of courts to find an
appropriate balance has been limited. Copyright doctrines including
merger and scenes t faire should provide some assistance, but have
proved difficult to apply in practice. Further, there are worrying judicial
splits about when and whether the doctrines contribute to decisions
about copyrightability per se as opposed to operating as a defense in an
infringement proceeding to explain a substantial similarity between two
computer programs.234

At the time, when Professor Ginsburg noted in 1994 that it was too
early to retreat from copyright protection for software,235 she was
probably correct. In 1994, it was not clear what kind of a role patent,
trade secrecy, and contract law would ultimately play in protecting code.
It was also not clear how sophisticated DRM measures would become,
and how quickly they might be developed to protect the interests of
software producers. The ensuing decade has shown much activity in all of
these areas. These developments, coupled with recent developments in
programming methodology and digital copyright law (including the
DMCA), suggest that large-scale copyright protection of code is simply
not necessary anymore.

Software developers can now utilize the patent system to protect
truly new and non-obvious software-related inventions and, to the extent
that patents are not available, they can resort to trade secrecy, coupled
with more effective contractual and DRM measures than existed
previously. The "trade-secret-plus-contract-plus-DRM" approach can
easily supersede copyright with respect to software because it addresses
all the ills that copyright law was originally adopted to combat. Further,
it combats those ills more effectively than copyright law because it
focuses on the protection of functional ideas rather than original
expressions.

That said, the question arises as to whether there is any harm in
retaining copyright protection as a low-cost alternative for software
developers to protect themselves against digital piracy. There is no
specific need for copyright protection in light of the ample protections
that can be provided through other legal means. In fact, copyright can
potentially be harmful in the software code context in a number of ways.
First, it is practically and theoretically unsatisfying to stretch copyright
principles into areas for which they are not a good fit. Setting precedents

234. Lexmark Int'l, Inc. v. Static Control Components, Inc., 387 F.3d 522, 557, 559 (6th Cir. 2004)
(Feikens, J., dissenting in part) (noting an existing circuit split on the application of the scenes d faire
doctrine and that it is unclear whether the merger doctrine operates as a bar to copyrightability or
rather as a defense to particular types of infringement).

235. Ginsburg, supra note 15, at 2560.

December 2006]

HASTINGS LAW JOURNAL

of this kind in the software code context potentially opens the door to
further attempts to stretch copyright law into other contexts where it is
not well-suited.3

6

Secondly, developments in programming methodology and digital
copyright law are not static over time. As these areas develop, copyright
appears to be a less and less comfortable fit for software code. Obvious
examples of this are: (a) the increasing modularization and object-
orientation of code which relies significantly on copying for innovation;
and (b) the enactment of the DMCA, which is potentially causing
problems of application where software code is incidentally incorporated
into physical after-market replacement parts. Although recent judicial
interpretations of both general copyright law and the DMCA's anti-
circumvention provisions seem now to be limiting the reach of the
legislation in these contexts, the door is still disturbingly open for
inappropriate uses of this legislation in the future, as acknowledged by
Judge Merritt in Lexmark.37

Further, as software producers increasingly rely on contractual,
DRM, and patent measures to protect their code, the maintenance of
copyright protection muddies the waters when disputes arise. Instead of
courts being able to focus squarely on the valuable utilitarian elements of
code, they are confronted with issues relating to the originality of
expressive elements of code. These are difficult questions that add
unnecessary time and cost to legal proceedings. This decreases the
efficiency of the legal process in this area, and potentially disadvantages
litigants who may not have the financial means to produce expert
witnesses to support their claims and defenses. It also detracts focus from
what is really at issue in the relevant cases, particularly as copyright
protection does not appear to add anything very significant to the
protections otherwise available to software developers through patent,
trade secrecy, contractual licensing, and DRM measures.

In terms of the globalization concerns raised by Professor Ginsburg

236. One example of this is the debate about sui generis intellectual property protection for non-
original database contents, such as a white pages telephone book. See Feist Publ'ns, Inc. v. Rural Tel.
Serv. Co., 499 U.S. 340,364 (i9i). These would generally not be protected under copyright law in the
United States on the grounds that they do not have sufficient originality to obtain copyright protection
even under the low standards of originality required by copyright law. See LEAFFER, supra note 4,
§ 2.12. There have been some legislative moves, particularly in the European Union, to enact
legislation based on a copyright model that protects such databases because of their clear commercial
value. Council Directive 96/9, 1996 O.J. (L 77) 20 (EC). Such legislative models are arguably overly
protective as attempts to apply copyright-like structures to non-copyrightable works. The Database
Directive in the European Union has been criticized on this score: Jacqueline Lipton, Balancing
Private Rights and Public Policies: Reconceptualizing Property in Databases, I8 BERKELEY TECH. L.J.
773, 777 (2003). It is, in fact, currently under review because of its potential over-protection of non-
original works. Commission of the European Communities, First Evaluation of Directive 96/9/EC on
the Legal Protection of Databases, COM (2005) (Dec. 12, 2005).

237. 387 F.3 d at 55i (Merritt, J., concurring).

[Vol. 58:205

IP'S PROBLEM CHILD

in 1994,238 while it is true that most jurisdictions are harmonized in their
adoption of copyright law to protect software code as a literary work, this
approach does not have to remain in place if copyright law is causing
problems of over-protection and innovation stifling. If the United States
were to suggest scaling back copyright law in a particular context today,
there may be less international consternation than there would have
been in the I98os or 1990s when copyright law was first adopted for code
and had not been significantly tested yet. Now there is sufficient evidence
to suggest that copyright law does not work particularly well for code.

Moving away from copyright protection of code would have to be
carefully planned and executed to ensure that it is only software code
removed from the ambit of copyright protection. It is appropriate to
retain copyright protection, and DMCA protection, for literary,
graphical, and other works reduced to digital formats, such as digital
movies, music, eBooks, and even new forms such as video games and
perhaps even some original and creative GUIs. Any item whose value
truly lies in its actual appearance or expression as opposed to purely in
its utility should still be subject to the protection of copyright law, even if
the protection is only thin.

To remove copyright protection for software code, legislative action
would be needed in both the United States and other jurisdictions. There
would also need to be movement at the international level to remove the
copyright protections for code in a number of relevant international
treaties and European Union Directives. 39 Thus, the decision to
eliminate copyright protection for software code is not a decision that
should be taken lightly because it certainly involves much legislative and
executive work both at the domestic and international levels. However, if
something is not working well and is potentially impeding innovations in
a particular field, it should be investigated with a view toward revising or
eliminating it. A comment made by Professor Samuelson in 1994 seems
even more pertinent today than it was at the beginning of the personal
computer revolution:

The status quo may seem comfortable, but it is unstable. Much of what
is valuable in software cannot be appropriately protected by existing

238. Ginsburg, supra note 15, at 2562-63.
239. WCT, supra note 89 ("Computer programs are protected as literary works within the meaning

of Article 2 of the Berne Convention. Such protection applies to computer programs, whatever may be
the mode or form of their expression."); Agreement on Trade-Related Aspects of Intellectual
Property Rights art. io(i), Apr. 15, 1994, 1869 U.N.T.S. 299, 33 I.L.M. 1197 ("Computer programs,
whether in source or object code, shall be protected as literary works under the Berne Convention
(197)."); Council Directive 91/25

o
, art. i(i), i991 O.J. (L 122) 42 (EEC) ("In accordance with the

provisions of this Directive, Member States shall protect computer programs, by copyright, as literary
works within the meaning of the Berne Convention for the Protection of Literary and Artistic Works.
For the purposes of this Directive, the term "computer programs" shall include their preparatory
design material.").

December 2006]

HASTINGS LAW JOURNAL

legal regimes, yet this very fact is what drives cycles of under- and
overprotection. Left unaddressed, these cycles will not simply die
down. Indeed, they are likely to grow worse as the industry matures."

Although Professor Samuelson was arguing for the development of
new sui generis forms of legal protection for code, today her concerns
could be addressed by simply scaling back some of the current legal
protections and relying instead on today's advanced technological
protection measures supported by contract and trade secret law.

240. Samuelson et al., supra note 13, at 2364-65.

[Vol. 58:205

	IP's Problem Child: Shifting the Paradigms for Software Protection
	Recommended Citation

	tmp.1623961341.pdf.SBdBV

