
University of Pittsburgh School of Law University of Pittsburgh School of Law 

Scholarship@PITT LAW Scholarship@PITT LAW 

Articles Faculty Publications 

2006 

Computer Models for Legal Prediction Computer Models for Legal Prediction 

Kevin D. Ashley 
University of Pittsburgh School of Law, ashley@pitt.edu 

Stephanie Bruninghaus 
University of Pittsburgh Graduate Program in Intelligent Systems 

Follow this and additional works at: https://scholarship.law.pitt.edu/fac_articles 

 Part of the Artificial Intelligence and Robotics Commons, Computer Law Commons, Educational 

Assessment, Evaluation, and Research Commons, Educational Technology Commons, Law and Society 

Commons, Legal Profession Commons, Legal Writing and Research Commons, and the Speech and 

Rhetorical Studies Commons 

Recommended Citation Recommended Citation 
Kevin D. Ashley & Stephanie Bruninghaus, Computer Models for Legal Prediction, 46 Jurimetrics 309 
(2006). 
Available at: https://scholarship.law.pitt.edu/fac_articles/526 

This Article is brought to you for free and open access by the Faculty Publications at Scholarship@PITT LAW. It has 
been accepted for inclusion in Articles by an authorized administrator of Scholarship@PITT LAW. For more 
information, please contact leers@pitt.edu, shephard@pitt.edu. 

https://scholarship.law.pitt.edu/
https://scholarship.law.pitt.edu/fac_articles
https://scholarship.law.pitt.edu/faculty_scholarship
https://scholarship.law.pitt.edu/fac_articles?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/837?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/796?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/796?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1415?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/853?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/853?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1075?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/614?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/338?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/338?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.pitt.edu/fac_articles/526?utm_source=scholarship.law.pitt.edu%2Ffac_articles%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leers@pitt.edu,%20shephard@pitt.edu


COMPUTER MODELS
FOR LEGAL PREDICTION

Kevin D. Ashley
Stefanie Briininghaus*

ABSTRACT: Computerized algorithms for predicting the outcomes of legal
problems can extract and present information from particular databases of cases to
guide the legal analysis of new problems. They can have practical value despite the
limitations that make reliance on predictions risky for other real-world purposes such as
estimating settlement values. An algorithm's ability to generate reasonable legal
arguments also is important. In this article, computerized prediction algorithms are
compared not only in terms of accuracy, but also in terms of their ability to explain
predictions and to integrate predictions and arguments. Our approach, the Issue-Based
Prediction algorithm, is a program that tests hypotheses about how issues in a new case
will be decided. It attempts to explain away counterexamples inconsistent with a
hypothesis, while apprising users of the counterexamples and making explanatory
arguments based on them.

CITATION: Kevin D. Ashley and Stefanie BrOninghaus, Computer Models for Legal
Prediction, 46 Jurimetrics J. 309-352 (2006).

Today's computerized databases of legal decisions beg an important
question: Can software generalize from patterns in and across cases to improve
understanding of legal domains, analyze new problem scenarios, predict new
case outcomes, and justify those predictions with explanations and arguments?
This is not a new question. Since computers first appeared, researchers have
attempted to use them to investigate legal domains, analyze problems, and
predict outcomes of legal disputes. They have refined and applied not only
statistical tools, but also tools developed by researchers in Artificial Intelli-

*The authors are, respectively, Professor, University of Pittsburgh School of Law, and
Doctoral Candidate, University of Pittsburgh Graduate Program in Intelligent Systems. The
research described here has been supported by Grant No. IDM-9987869 from the National Science
Foundation.
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Ashley and Braninghaus

gence (AI) and Machine Learning (ML) to discover implicit regularities in
data and to induce rules. These investigations have shown much promise but
have also uncovered pitfalls. Legal scholars have argued that predictions based
on ML or data-mining techniques can provide a window into legal domains
and reasoning,' and they have urged a renewed look at what the applications of
these techniques may reveal, including predicting the future behavior ofjudges
and discovering the most predictive types of explanatory legal concepts.

Yet, problems of representing textual cases for purposes of prediction are
still major hurdles, and most prediction approaches have not been able to
explain predictions in terms of legal reasons that are meaningful to legal
practitioners. This article argues that automated prediction should be seen as a
technique for bringing information contained in particular sets of cases to bear
upon the legal analysis of a problem situation and should be assessed in terms
of how well it supports such legal deliberation. The paper compares different
approaches to automating prediction in terms of how well they apply the case
information to make accurate predictions, as well as how well they explain the
applicable case information and justify the prediction. Treating legal delibera-
tion and prediction as analogous in some respects to a process of testing
scientific hypotheses, 3 the paper proposes a computerized Issue-Based
Prediction (IBP) algorithm to frame and test predictive hypotheses against
data.4 The hypotheses concern the legal outcomes of factual disputes, and the

I. Dan Hunter, Near Knowledge: Inductive Learning Systems in Law, 5 VA. J.L. & TECH. 9,
71 -72 (2000).

2. Frederick Schauer, Prediction and Particularity, 78 B.U. L. REV. 773, 774-75 (1998).
3. According to S.L. Hurley, legal deliberation and scientific theorizing are both "responsible

to the data to be explained .... In both areas the data in some sense determines the best theory....
[Slituations that are relevantly similar in respect of data must be treated consistently in theoretical
respects, or, more briefly . . . like cases should be treated alike." S.L. Hurley, Coherence,
Hypothetical Cases, and Precedent, 10 OXFORD J. LEGAL STUD. 221, 230-34 (1990). The analogy
should not be taken too far. As Hurley warns, scientific hypotheses based on causal theories "that
account for what has happened in well-designed experiments generate predictions which are then
tested against the results of further experiments. By contrast, ethical and legal deliberation ... has
a normative role: to give guidance in extending consistently to the case at issue a series of settled
ethical or legal judgments about what should be done when the applicable ethical or legal reasons
conflict .... Deliberative hypotheses are used to generate not mere predictions of decisions and
actions, but decisions and actions themselves ... they are tested against cases, both actual and
hypothetical, in which the right answer about how a conflict of reasons should be resolved is
settled." Id.

4. IBP's approach is scientific in Llewellyn's sense of the term. "A scientific approach to
prediction we may have, and we may use it as far as our materials will permit. An exact science in
result we have not now." KARL N. LLEWELLYN, THE BRAMBLE BusH 52 (1930) (emphasis
added). While taking into account facts and outcome, the IBP approach does not take into account
a case's procedural setup, as Llewellyn recommended. The algorithm's method of breaking
problems down by issues, comparing cases, and trying to explain away counterexamples is an
attempt to systematize comparisons to achieve, where possible, "a perfect working out of
comparison and difference.., an experimentum cruces." Id. The algorithm's focus on explaining
away counterexamples to a hypothesis, in effect, systematizes an approach recommended by
Radin: "[ijn order to estimate the probable action of a court, it is well to read the books which the
court will read and will study, and to refute, if we can, whatever we find in those books that runs

46 JURIMETRICS



Computer Models for Legal Prediction

"experimental data" are the decided cases stored in a computerized case
database. Given the facts of a new dispute, IBP identifies which legal issues
they raise, formulates hypotheses about who should prevail on each issue, tests
the hypotheses against past cases in its database, attempts to explain away
cases inconsistent with a hypothesis, determines which party is favored for
each issue, and combines the analyses into an overall prediction.5 The paper
concludes that IBP does a better job of identifying relevant information in a
collection of cases and employing it for predicting and explaining the outcome
of particular problems than a plausible set of competitive approaches. IBP's
predictions not only are more accurate than those of competing ML ap-
proaches, but they also generate argument-like explanations.

Part I summarizes the history of research on legal prediction. Part II
presents the IBP approach to legal prediction. Part III offers a comparative
analysis of the IBP approach with the major alternative approaches for
automated legal prediction: rule learning, case-based algorithms (including
nearest neighbor and argument-based algorithms such as IBP), and a Bayesian
learning algorithm that implements a kind of statistical prediction. The
algorithms are compared in terms of how well they can apply the information
contained in the same database of cases to the analysis of particular legal
problems. Specifically, the algorithms are compared in terms of the accuracy
of their predictions, whether the algorithm can explain predictions in terms
meaningful to attorneys, the nature of their generalizations, and the algo-
rithm's ability to deal with inconsistent cases. Part IV considers some
ramifications of computerized algorithms for predicting the outcomes of legal
problems and for the design of future legal information systems.

I. THE HISTORY OF RESEARCH
ON LEGAL PREDICTION

A. Early Work on Computerized Prediction in Law:
Nearest Neighbor

In the 1950s through the 1970s, researchers first explored applying
mathematical and computational tools to the task of legal prediction. Their

counter to what we wish the law to be,--or generally, to have been." Max Radin, Case Law and
Stare Decisis: Concerning PR4JUDIZIENRECHT IN AMERIKA, 33 COLUM. L. REV. 199, 212
(1933).

5. As her Ph.D. dissertation project at the University of Pittsburgh's Graduate Program in
Intelligent Systems (ISP), Stefanie Brtlninghaus designed and built SMILE+IBP, a program that
can reason with textual summaries of case facts and predict their outcomes based on a database of
trade secret cases. The IBP program was part of that work. See Stefanie Brtlninghaus, Issue-Based
Prediction in IBP, Chapter 3 of Generating Legal Arguments and Predictions from Case Texts
(Dec. 15, 2005) (unpublished draft Ph.D. dissertation, University of Pittsburgh) (on file with
author). This dissertation provides the most comprehensive account of the IBP program and the
experiments performed with it.

SPRING 2006
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tools ranged from weighting schemes based on judicial votes 6 to the "nearest
neighbor" method for assessing case similarity7 to "boolean lattices" (algebraic
structures implementing the operations of conjunction, disjunction, negation,
intersection, union, and complement) a to a variety of statistical techniques (for
example, multiple regression, discriminant analysis, linear programming, and
probit analysis).9 They applied these tools to a variety of legal domains
including U.S. Supreme Court right-to-counsel cases,' 0 Swiss workmen's
compensation cases, and Canadian tax cases."

To apply such prediction tools, the case data must be amenable to
computer processing. Legal cases, however, are not recorded in what today
would be called a database format. Therefore, one must create a structured
scheme of standardized descriptors to represent outcomes and factual circum-
stances. One then must manually extract the relevant descriptor values from
each case text. Depending on the representation scheme, the values for each
fact descriptor may be numbers, Boolean (true or false), or values from a
predefined set of features.' 2 Thus, early prediction researchers developed lists
of descriptors for representing relevant general factual features of a class of
cases and then manually assembled databases of typically 20 to 100 cases
involving a particular issue. For example, Mackaay used Lawlor's database of
64 Canadian capital gains tax cases for which Lawlor had identified 46 fact
descriptors relevant to whether the gain was "a mere enhancement of value by
realizing a security, or ... made in an operation of business in carrying out a
scheme of profit making."' 3 Each case was represented by 46 fact descriptors,
which could be true (1) or false (0). The fact descriptors included features like
"the present transaction is an isolated one," or "at the time of purchase, private
party had an other intention than to resell at a profit."'14

In making predictions, the project used a nearest-neighbor approach. The
idea of the k-NEAREST-NEIGHBOR algorithm (kNN) is to determine the k cases
closest to the problem in terms of some similarity measure and assign an
outcome according to the majority of those cases. This computational method
was first introduced in pattern recognition, but seemed plausible for common
law applications, where "like cases are decided alike." The most important
element in a nearest-neighbor approach is the similarity measure. Mackaay's

6. Fred Kort, Predicting Supreme Court Decisions Mathematically: A Quantitative Analysis
of the "Right to Counsel" Cases, 51 AM. POL. Sci. REV. I, 1-12 (1957).

7. Ejan Mackaay & Pierre Robillard, Predicting Judicial Decisions: The Nearest Neighbour
Rule and Visual Representation of Case Patterns, 3 DATENVERARBEITUNG IM RECHT 302, 307
(1974).

8. Id. at 306.
9. Id.
10. Kort, supra note 6.
11. Mackaay & Robillard. supra note 7, at 303, 306.
12. Often, these schemes can be likened to the organization of a spreadsheet where the

descriptors correspond to the columns, and each row corresponds to a case.
13. Id. at 311.
14. Id. at 327-31.
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program uses the simplest measure of how similar two cases are: it counts the
features with identical values. Other researchers have applied the nearest-
neighbor algorithm to legal prediction tasks using more complex similarity
measures that assign weights to different fact descriptors. 15 These measures
take into account the correlation between features and outcome or the relative
spread of the features' values and assign greater weight to closer neighbors or
weigh each attribute differently according to some measure of its relevance.

The pioneer researchers also developed a means for objectively evaluating
their prediction techniques. Lawlor employed a "cyclical sampling" approach
-now more commonly known as a "leave-one-out" experiment-to test his
prediction scheme. Each of the cases in the collection was designated as a test
case once and removed from what is often called the training set. The outcome
of the test case is then predicted using the training set. So, for every case in the
collection, exactly one prediction is made by the system. Using a leave-one-
out procedure, Mackaay compared his nearest-neighbor approach to the
predictions of an independent lawyer and to two other approaches that
computed descriptor weights. He compared the methods in terms of accuracy
(i.e., the fraction of the number of cases the method correctly predicted out of
the total number of cases). The nearest-neighbor approach and the independent
lawyer did best: each got only four of 64 cases wrong, but the sets of cases
where mistakes were made did not completely overlap between the different
algorithms and the human expert.16

Mackaay carefully studied the cases in which any of the predictive
methods erred. His program visually displayed the cases so that their apparent
distance reflected their similarity. The picture revealed PRO and CON regions
of cases with a rough border in between. Significantly, many of the cases that
any prediction method had gotten wrong appeared close to the PRO-CON
border. Tax law experts related the borderline cases to trends in tax law and to
particular contemporary cases in which tax law journals provided in-depth
analysis.'

7

Although the nearest-neighbor approach can show where a new case fits
in with its most similar neighbors and how close it lies to case outcome
boundaries as well as provide some explanation by listing the features shared
and not shared among neighbors, it normally does not explain why the shared
features account for a result or why unshared features lead to different results
because it usually lacks additional information about the features' legal
significance. Moreover, similarity in such an approach is often defined in a
way that is oddly inappropriate to law. Although it takes feature overlaps into
account, it ignores the features' legal meaning and the relationships among the

SPRING 2006

15. See JAMES POPPLE, A PRAGMATIC LEGAL EXPERT SYSTEM 40-41, 75-82, 87-89, 146-
51(1996).

16. MacKaay & Robillard, supra note 7, at 313.
17. Id. at 310-313.
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sets of features that cases share with a problem.' 8 Thus, in a nearest-neighbor
approach, two quite different cases can be equidistant from a case whose
outcome is to be predicted. There is no guarantee that neighboring cases share
a core of features from which one might fashion an explanation or argument as
to why they should be decided similarly. If they do share such features, it is an
empirical coincidence. This is one reason why a good scheme for assigning
weights can help: the more crucial features would naturally have higher
weights, and neighboring cases would be more likely to share them.

Although many nearest-neighbor approaches incorporate weighting
schemes, assigning weights to legal-fact descriptors may often be problematic.
A fact descriptor's "weight is highly contextual and depends on individual
problem situations."' 19 A normally insignificant descriptor may be important in
a particular context. Often an attorney may need to argue for a PRO result in a
problem case whose nearest neighbors are CON. For purposes of argument,
empirically assigned descriptor weights may not help to identify reasons why
the problem is exceptional or why the shared descriptors should not determine
the outcome in these circumstances. Producing such arguments and explana-
tions requires one to understand more of the legal reasons, even the principles
and policies underlying the fact descriptors, and how they interact in the
problem's context. 20 The k-NEAREST-NEIGHBOR algorithm, nevertheless, is a
staple in the arsenal of computational tools for reasoning with cases in a
variety of domains.

B. Lessons from Early Prediction Work: Statistical Analysis
Another approach to legal prediction focused on statistical analyses of

published judicial decisions.2' Carried out in law schools, it represented a kind
of "systematization of traditional legal research. Instead of reporting the fruits
of years of subjective reading of opinions that had crossed one's desk, the
legal scholar turned to selecting randomly, coding tirelessly, and then analyz-
ing hundreds of cases."22 After reading cases from a chosen legal domain,

18. The similarity measures in the afortiori models of case-based legal reasoning described
in Part I.D. I (HYPO, CATO and IBP) do take such additional information into account.

19. KEVIN D. ASHLEY, MODELING LEGAL ARGUMENT: REASONING WITH CASES AND
HYPOTHETICALS 175 (1990).

20. Part IV, infra, presents some approaches to this challenge.
21. Political scientists developed predictive methods to investigate judicial decision making.

They expanded lists of fact descriptors beyond "legally relevant" facts to include anything that
could predict a judge's decision, such as "the policy attitudes or preferences of the Justices [as
evidenced by] the party affiliations of the Presidents who appointed them." Schauer, supra note 2,
at 784-85. The work tended to show that attitudinal factors were more influential in predicting
legal decisions than the legal criteria, a conclusion that has been criticized as an artifact of the
biased selections of cases and on other grounds. Id. at 785 n.32; see also Theodore W. Ruger et
al., Essay, The Supreme Court Forecasting Project: Legal and Political Science Approaches to
Predicting Supreme Court Decisionmaking, 104 COLUM. L. REV. 1150 (2004).

22. Kevin M. Clermont & Theodore Eisenberg, Litigation Realities, 88 CORNELL L. REV.
119,125-6 (2002).
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researchers define the legal categories, decide on a comprehensive list of
cases, and construct as exhaustive a list of descriptors as possible for repre-
senting cases in terms of whatever may contribute to outcomes. 23 The cases are
coded manually, and then processed by statistics software. Taking into account
the presence and absence of the descriptors, the program computes correla-
tions between descriptors and .decisions and the descriptors' predictive
weights.

The goal of this program is to create a target function (i.e., a mathematical
function that assigns to a new case a classification such as "plaintiff wins"). In
logistic regression, for instance, the target function estimates the probability of
a party's winning using an exponential function for the features.24 The
exponential functions include feature weights, which are derived from the
training data using advanced statistical methods. More significant features will
have a higher weight and thus a higher impact on the prediction. However, the
interaction between features is very complex and small differences can have
huge effects. Although experienced statisticians may have some intuitions
about the behavior of these models, one cannot generate legal arguments and
explanations from the weights. As a result, the methodology's limitations
make statistical analysis of judicial decisions a very risky undertaking. One
needs a representative sample of all relevant cases, but "judicial decisions
represent only the very tip of the mass of grievances [and] are a skewed
sample of that tip ofjudicial decisions. 2 5

Considerations that complicate reliance on predictions include small and
skewed sample size, time lags that do not account for changes in the law,26 and
variables not taken into account in the model, including the procedural setting
and unarticulated judicial attitudes.27 Judges may not have disclosed the
features that influenced their decision or stated their rationales accurately or

23. For example, legal criteria, factual criteria, race and sex of parties, and judges' names
have been used as descriptors.

24. Logistic regression requires a certain degree of manual preprocessing. The features have
to be statistically independent; the inclusion of two features that impact each other often leads to
lower accuracy in assessing the weights of the features. In addition, these models usually perform
best if only a carefully selected feature subset is included. Although it may seem counterintuitive,
the models tend to do better with less information. While Machine Learning research provides
some guidance for this feature selection, it remains largely a matter of trial and error. See, e.g.,
Ruger et al., supra note 21. Along the same lines, fairly large datasets are necessary. There may be
too few cases "to draw statistically meaningful conclusions except for very general issues. In some
situations, this small numbers problem may prevent identification of trends that would reach
statistical significance given a larger sample." William M. Sage, Judicial Opinion Involving
Health Insurance Coverage: Trompe L 'Oeil or Window on the World?, 31 IND. L. REV. 49, 61
(1998).

25. Clermont & Eisenberg, supra note 22, at 125-26.
26. Sage, supra note 24, at 62.
27. The "attitude of [al judge toward the granting of motions to dismiss" might make a

difference. Marjorie Anne McDiarmid, Lawyer Decision Making: The Problem of Prediction,
1992 Wis. L. REV. 1847, 1888 (1992). Or, as Schauer wryly suggests, the fact that the party
seeking or defending against an injunction in a West Virginia Supreme Court case is a coal
company could be significant. Schauer, supra note 2, at 782-83.
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completely.28 Statistical analysis of judicial decisions is subject to a further
criticism: the method could not generate legal explanations of its predictions.
There is no simple way to interpret the predictions in terms of legal reasoning
or argument. One can list the coefficients in a logistic regression, but these do
not correspond to any obvious legal argument. At best, one can see where a
new case lands in the list of past cases ordered by the probability of their
outcomes and compare the new case to its neighbors on the ordered list. As
with nearest neighbor, however, the ordering captures cumulative attribute
weights across all cases. It may not lend itself to constructing legal arguments
as to why one case is stronger than another.

C. Machine Learning in Al & Law
Practitioners of Artificial Intelligence and the Law (ALL) have wrestled

with how to achieve both accurate prediction and plausible legal explanations.
They have developed techniques for representing legal knowledge in compu-
tational models to investigate legal reasoning from a jurisprudential viewpoint
and to build legal expert systems and intelligent tutoring systems for teaching
law and improving legal information retrieval. One AlL approach has involved
rule learning, a Machine Learning (ML) technique that induces predictive
rules from decided legal cases. Since induction programs generate rules to
make the predictions, the rules can also be used to explain those predictions.
The induced rules "are obviously relevant in a legal framework, since the
inductive generation of rules from experience corresponds to our deeply held
perception that the derivation and use of rules are central to legal reasoning. 29

For instance, an early project applied a well-known ML algorithm (1D3) to
derive a decision tree from a database of cases dealing with the division of
property upon divorce. 30 A decision-tree learner generates a structured tree of
logical tests for determining the target label-here, a case's predicted out-
come. The algorithm first selects the attribute best correlated with the outcome
of the case. It then creates a decision point with the attribute as test and uses its
value to separate the training set into two subsets, each of which will be
handed down the respective branch in the tree. This process is repeated
recursively, until the branch only contains positive or negative examples, at
which point a leaf node with the respective labels is added to the tree. A new
example is passed down through that tree until it reaches a leaf node, whose
value is used as the prediction. Many different implementations of the basic
algorithm exist, which may apply different statistical methods to select the
attributes on which to split, to decide what to do if the algorithm cannot find a

28. Sage, supra note 24, at 66-67.
29. Hunter, supra note 1, at 12.
30. JOHN ZELEZNIKOW & DAN HUNTER, BUILDING INTELLIGENT LEGAL INFORMATION

SYSTEMS: REPRESENTATIONS AND REASONING IN LAW, 264-69 (1994).
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set of logical tests to discriminate between a set of positive and negative
instances, and to simplify the tree.3'

Zeleznikow and his colleagues applied this technique to a database of
cases dealing with whether a transaction involved the deferral of debt, an
element in determining whether the transaction is regulated under a Victoria,
Australia, Credit Act. A set of 27 cases was represented in terms of five
Boolean attributes listed in Figure 1. The learning algorithm induced a tree,
shown in Figure 1, with six leaf nodes shown as boxes with a count of the
respective training cases.32 Five of the leaf nodes are "pure" in the sense that
they contain only cases in which there was no debt deferral (labeled "no") or
cases in which there was debt deferral (labeled "yes"). These pure leaf nodes
correspond to a predictive rule. The rule is a path through the tree from the
root node to the leaf node with the indicated test results. For instance, Rule I
states, If pay_deferred = yes and benefit = yes and dutypay = yes and
in_money = yes then debtdeferral. 33 Rules like this can be used not only to
make predictions, but also to explain them. The rule justifies the inductive
inference of debt deferral in a new case where the answers to the tests
correspond to the pattern captured in Rule l's preconditions. In four such
cases, debt deferral was found.

ben efit

duty-pay

Did th debtor .e.eie benlil?

W a. lb.-e ©outecal d.ty of
payent?

pOydeferred w s the duty t, pay
-t-lrae lly def,,rad?

In-money Wa Iseetquiemettrepayath be.f ennl ony?

defe1eed_
aslgniftan

Was 1h. p.ri.d fdef... It .y1 pay deferred

a b tdeferred_slgnlfcant

duty_pay NO debt deforal benef *R 5"
0 - Y - 14 fsee labeenod Pa , . .. .I....

duty 2 cases labeled *yes'

q ~ ln..aseey No debt..detta
, ad... .

- ,  ,
-.

' n o "
e, a ensy

Rule. I Rule 3 'Rule V
debt deferral NO debt-deferral o c
4 cases labeled "yes" 1 case labeled " 4 cases labeled "n"

3 cases labeled 'yes'

Figure 1: Decision Tree for debt-deferral

31. The best known implementations include ID3 and its successor, C4.5. See J. Ross
QUINLAN, C4.5: PROGRAMS FOR MACHINE LEARNING (1993).

32. George Vossos, Incorporating Inductive Case-Based Reasoning Into an Object-Oriented
Deductive Legal Knowledge Based System 146, 157 (May 1995) (unpublished Ph.D. dissertation,
Latrobe University) (on file with author).

33. Id. at 158.
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Although such rules are explanatory, they are still inadequate as legal
explanations.34 They do not give reasons for a decision because they do not
employ abstract legal concepts, drawn from statutes, legal principles, or
underlying policies, normally used to explain a predicted decision. Moreover,
as illustrated in the study below, the induced rules may make accurate
predictions but not correspond to patterns of reasoning that are familiar to
attorneys.

Organizing a database of cases for making predictions can summarize
useful information about how that body of cases bears upon a new case. Even
a predictive "rule" that fails may convey useful information. In the decision
tree of Figure 1, for instance, the leaf node corresponding to Rule 5 is not pure:
it contains three cases that found debt deferral and four others where no debt
deferral was found. As the quotation marks around Rule 5 indicate, this is not a
predictive rule. "it is essentially impossible for an induction algorithm to
classify two cases which are identical on their attribute-values, but differ on
their outcomes. ' 35 Zeleznikow and Vossos treated such "rules" as indices in
the database. In a new case, if paydeferred = no and deferred significant =
yes and benefit = yes and dutypay = yes and inmoney = yes, then there are
seven cases in the database similar to the new case. Four of them indicate no
deferral of debt and three indicate the contrary. Such a "rule" is not itself the
basis for a prediction, but it does point to relevant yet inconsistent cases in the
database.36 Perhaps reading the cases may turn up some basis for deciding that
the problem is more relevantly similar to one group or the other in ways not
reflected in the cases' descriptors.

D. AlL, Argumentation, and Prediction
The problems of the early prediction work and the later statistical

approaches at first led a number of AlL researchers to eschew prediction
altogether in favor of automating legal argument. Modeling case-based legal
argumentation promised a way around the problems of prediction. Indeed, it
led to advances in computationally modeling legal reasoning. As it happened,
however, some approaches to modeling case-based legal argumentation can
also be applied to making predictions. Recently, researchers in AlL have used
prediction results to support the claim that argumentation models capture

34. In law, "[r]egularity of experience is a poor warrant for any legal outcome, and we
generally seek to abstract some more general principle .... [linductive inference alone cannot
provide warranted belief in the generalization derived by the inductive process. We need to
generate an explanatory or justificatory principle." Dan Hunter, No Wilderness of Single
Instances: Inductive Inference in Law, 48 J. LEGAL EDUC. 365, 382-83 (1998). As discussed in
Parts IIl and IV, enabling a program to use such justificatory principles or integrate them into their
explanations of predictions is still a matter of research.

35. Hunter, supra note 1, at 47-48.
36. Vossos, supra note 32, at 157-58.
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important aspects of legal reasoning.3 7 This development has raised the
tantalizing prospect of programs that can make predictions, explain them
plausibly, and even make arguments attacking the predictions in terms that
legal professionals can evaluate.

1. A Fortiori Models of Legal Argument
Two recent approaches to computerized prediction and explanation, the

CATO program and the Issue-Based Prediction (IBP) algorithm,3 s both
assume that cases have been represented in terms of a particular kind of fact
descriptor called Factors, first introduced in the HYPO program. 9 Each Factor
captures a stereotypical pattern of facts that tends to strengthen or weaken the
plaintiff's position concerning a particular kind of legal claim. For trade secret
law, the Factors used in the CATO and IBP programs are shown in Table 1.
The table shows each Factor's numerical designation, its name, the side it
favors, and its meaning.

Table 1: Factors in IBP, CATO, and HYPO
No. Name Side Meaning

Fl Disclosure-in-Negotiations D P disclosed its product information in
I negotiations with D.

F2 Bribe-Employee p D paid P's former employee to switch
employment to get P's product information.

F3 Employee-Sole-Developer D Employee D was sole developer of P's
product.

F4 Agreed-Not-to-Disclose p D entered into nondisclosure agreement
with P.

F5 Agreement-Not-Specific D Nondisclosure agreement did not specify
info to be treated as confidential.

F6 Security-Measures p P adopted security measures.

F7 Brought-Tools p P's former employee brought product
B development information to D.

F8 Competitive-Advantage 1 D's access to P's product information
saved D development time or expense.

FI0 Secrets-Disclosed-Outsiders D P disclosed its product information to
outsiders.

F1 Vertical-Knowledge D P's info is about customers and suppliers
(and thus available independently).

F12 Outsider-Disclosures-Restricted p P's disclosures to outsiders were subject to
I_ confidentiality restrictions.

37. See, e.g., Vincent Aleven, Using Background Knowledge in Case-Based Legal
Reasoning: A Computational Model and an Intelligent Learning Environment, 150 ARTIFICIAL
INTELLIGENCE 183, 183-237 (2003).

38. Aleven, supra note 37, at 183; Stefanie Bruninghaus & Kevin Ashley, Predicting
Outcomes of Case-Based Legal Arguments, Proceedings of the Ninth International Conference on
Artificial Intelligence and Law 233-42 (2003).

39. See ASHLEY, supra note 19.
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No. Name Side Meaning

F 13 Noncompetition-Agreement p P and D entered into a noncompetition
agreement.

F 14 Restricted-Materials-Used p D used materials subject to confidentiality
restrictions.

F15 Unique-Product p P was only manufacturer of product.

F16 Info-Reverse-Engineerable D P's product information could be learned
by reverse engineering.

F 17 Info-!ndependently-Generated D D developed its product by independent
research.

F18 Identical-Products p D's product was identical to P's.

F19 No-Security-Measures D P did not adopt any security measures.

F20 Info-Known-to-Competitors D P's information was known to competitors.

Knew-Info-Confidential D knew that P's information wasconfidential.

F22 Invasive-Techniques p D used invasive techniques to gain access
to P's information.

F23 Waiver-of-Confidentiality D P entered into an agreement waiving
confidentiality.

F24 Info-Obtainable-Elsewhere D P's info could be obtained from publiclyavailable sources.

F25 Info-Reverse-Engineered D D discovered P's information through
reverse engineering.

F26 Deception D obtained P's information through
deception.

F27 Disclosure-In-Public-Forum D P disclosed its information in a publicforum.

Factors are a kind of expert knowledge about the claim. Statutes, case
opinions, law review articles, Restatements and other scholarly works often
identify fact patterns that are legally relevant, affect the strength of a claim,
and apply to more than a few cases. For a fact pattern to be deemed a Factor, a
judge in at least one opinion must have indicated that the case was decided as
it was because of, or in spite of, the presence of such facts. A case is repre-
sented in terms of those Factors whose fact patterns appear to be present as a
matter of direct inference from the text. A Factor does not apply if either the
fact pattern is known to be absent, or there is insufficient information reported
from which to infer that the fact pattern is present.40

Since Factors represent a claim's relevant factual strengths and weak-
nesses, they support an afortiori model of a precedent's persuasive force. If a
problem has all the precedent's Factors relevant to a conclusion, including at

40. As noted, Factors represent factual patterns that tend to strengthen one side's claim.
Ordinarily, the absence of a Factor favoring one side is not counted as a strength of the opposing
side. When courts specifically refer to the absence of a pattern associated with a Factor as a
strength for the opposing side, however, a new Factor will be created to represent the absence of
the pattern. Another exception is in distinguishing a cited case. See infra note 43.
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least one factor favoring the conclusion, but no additional factors favoring the
opposite conclusion, it follows that the conclusion is favored as strongly in the
problem as in the case. One can make a reasonable argument by analogy that
the problem should be decided a fortiori as the case was. The analogy
comprises the set of shared Factors relevant to the conclusion. If the problem
has some additional Factors favoring the conclusion, or the case has some
additional Factors favoring the opposing side, then the conclusion is favored
even more strongly in the problem than in the case. If, on the other hand, the
case has some Factors favoring the conclusion not shared in the problem, or
the problem has some Factors militating against the conclusion and not shared
in the case, then the problem's conclusion does not follow afortiori from the
case. The case may still be cited for the conclusion in the problem, but those
unshared Factors are relevant differences between the problem and the case
and can be used in an argument distinguishing the problem from the case.

The HYPO program embodied such an a fortiori model computation-
ally. 41 It defined in terms of subset relations over Factors the conditions in
which cases could be cited in support of a decision, and it generated arguments
by analogy for and against a proposed conclusion.42 The model assumes that a
primary argument role of cases is conflict resolution; a case decision resolves
strengths and weaknesses and can show how to resolve similar conflicts in
future cases. HYPO used its afortiori model not to make predictions but to
generate actual arguments by analogy that attorneys can read and evaluate as
legal arguments.43 HYPO records the court's holding, the Dimensions (i.e.,

41. HYPO's afortiori model bears some resemblance to a technique employed in the early
prediction work. Kort and Lawlor introduced "the idea of polarization of variables and of case
ranking. A binary variable is correctly polarized if its 'I' state is more favourable to a PRO
decision than its '0' state. Given the assumption of independence of variables, one can define a
partial order amongst cases: a case A is ranked above case B if the fact pattern of A can be
obtained from that of B by changing at least one '0' state into '1'. If a case is decided PRO, it may
then be inferred that all higher ranked cases should also, and inversely if it is decided CON, all
lower ranked cases should be so decided." Mackaay & Robillard, supra note 7, at 306 n. 11.
Lawlor referred to this phenomenon as convex consistency, which "is applied only to pairs of
cases in which the facts present in one case are a sub-set of the facts present in the other case."
Reed Lawlor, Axioms of Fact Polarization and Fact Ranking-Their Role in Stare Decisis, 14
VILL. L. REV. 703, 719 (1969); Franklin Fisher, On the Existence and Linearity of Perfect
Predictors in "Content Analysis," 2 MODERN USES OF LOGIC IN LAW 1 (1960). He designed
techniques for assigning weights to polarized fact descriptors for purposes of predicting case
outcomes mathematically. He also noted that polarized fact descriptors were useful in modeling
argument phenomena like distinguishing. Lawlor, supra, at 716-17. Lawlor's was a model of
prediction, however, not of argumentation. He did not implement a computer program that could
generate arguments automatically.

42. ASHLEY, supra note 19; Kevin Ashley, An Al Model of Case-Based Legal Argument
from a Jurisprudential Viewpoint, 10 ARTIFICIAL INTELLIGENCE AND LAW 163, 206 (2002).

43. There are a number of differences between Lawlor's polarized descriptors and Factors.
Lawlor's prediction approach assumed that a case was represented by a list of binary features that
were either present as strengths for the plaintiff or absent and thus strengths for the defendant. By
contrast, in HYPO each Factor was represented as a Dimension, a knowledge representation
device Ashley invented to capture such information as the prerequisites for applying a Factor to a
case, the range of values a Factor might have in a case, and the direction in the range that favored
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knowledge structures representing Factors) consistent with the holding, and
those that are not. HYPO uses such information not for prediction or for
adjusting attribute weights but to generate arguments showing how courts
previously have resolved conflicting factual strengths and weaknesses.

2. Making Predictions with CATO's Argumentation Criteria
To improve the arguments that a program like HYPO could generate,

Aleven invented a hierarchical representation of the meaning of Factors. The
Factor Hierarchy relates each Factor to one or more issues or elements in trade
secret law and thereby provides more abstract reasons why the Factor matters.
The Factor Hierarchy excerpts of Figure 2 illustrate how Factor F12, Outsider-
Disclosures-Restricted (P), is related to the issue of whether the plaintiff's
information is a trade secret (F 101).44 The presence of Factor F12 shows that
the plaintiff took efforts to maintain the secrecy of the information (F102,
F123) and that the information was apparently not known or available outside
of the plaintiff's business (F105, F106). In addition, F12 also provides
evidence against the conclusion that the information was legitimately obtained
(F120). The support relations can be positive or negative (not shown) and
strong or weak. Strength is associated not with a weight, but with whether a
conclusion may be blocked for certain purposes of argument in the presence of
opposing evidence.

CATO made more sophisticated arguments than HYPO could. CATO
could do more reasoning about the legal significance of similarities and
distinctions. It could also organize the cases by the issues in the Factor
Hierarchy and generate multi-case arguments for plaintiff and defendant. In
addition, for any case that was distinguishable because it had extra Factors

plaintiff. HYPO's Dimensions were not simply binary; some had numerical and other ranges to
capture magnitudes that could be relevant to the comparative strength of a Dimension in a
particular case (e.g., fewer disclosures to outsiders were better for plaintiff's trade secret
misappropriation claim). Cases in HYPO were not treated as being represented with values for all
the features. Rather, HYPO represented a case primarily as the set of the proplaintiff and
prodefendant Dimensions that were known to apply to it (i.e., whose prerequisites were satisfied in
the case.) HYPO did not generally treat the absence of a proplaintiff Dimension as a positive
strength for the defendant. Instead, it took the argument context into account. For instance, in
distinguishing a problem from a case, HYPO (and CATO) would call attention to the absence in
the problem of a Dimension in the case that favored the case's outcome, making the cited case
stronger for that side than the problem. In the context of distinguishing an opponent's case, this is
a reasonable argument move. For another example, as a way of showing how an argument could
be strengthened, HYPO could hypothesize that a missing (i.e., near-miss) Dimension applied and
demonstrate the new arguments that would ensue as a result. Another difference concerns
weighting. For prediction, Lawlor treated it as axiomatic that "fact descriptors can be ranked
relative to each other in accordance with their relative strengths with reference to a particular
issue. A fact of higher rank has greater strength or weight than a fact of lower rank." Lawlor,
supra note 41, at 706. In designing HYPO, Ashley eschewed assigning quantitative weights to
Dimensions. ASHLEY, supra note 19.

44. Aleven, supra note 37, at 192. In the Factor Hierarchy, base-level Factors have two-digit
identifiers (see Table i); issues and reasons (i.e., abstract Factors) have three-digit identifiers.
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supporting a conclusion or that lacked some of the Factors opposing it, CATO
could emphasize or downplay the significance of the distinction in terms of the
issues and reasons why they mattered. Interestingly, in the Factor Hierarchy, a
Factor might have more than one interpretation; it could be related to more
than one issue or reason for its significance. This meant that in downplaying or
emphasizing distinctions, the program had to make choices of how best to
characterize a distinguishing Factor. Aleven's algorithm decided which
reasons to pursue and how abstractly to characterize them in terms of context-
sensitive criteria in order to undercut Factors in the same case, to draw an
abstract contrast, or to emphasize corroborating support. 5

Figure 2: Factor Hierarchy Excerpts

45. Id. at 205-07.

SPRING 2006

Legend

Legal Issue Stronger Support -4

Reason ] Weaker Supporta

Factor



Ashley and Bruninghaus

The following example shows how CATO analyzes a trade secret law
case, K & G Oil Tool & Service Co. v. G & G Fishing Tool Service.46 The
facts of the K & G case can be summarized in terms of seven Factors, five
favoring plaintiff (F6 Security-Measures (P), F15 Unique-Product (P), F21
Knew-Info-Confidential (P), F18 Identical-Products (P), F14 Restricted-
Materials-Used (P)) and two favoring defendant (F16 Info-Reverse-Engineer-
able (D), F25 Info-Reverse-Engineered (D)).47

In analyzing the K & G case, CATO (as HYPO before it) could retrieve
all of the cases in the database that shared any Factors with the problem and
sort them in the order of the inclusiveness of the sets of Factors each case
shared with K & G. The program could then select the citable cases (cases
with at least one Factor favoring the winner) that also had the maximal subsets
of K & G's Factors and for which no cases won by the opponent had more
inclusive subsets. Having selected these so called best untrumped cases
(BUCs), the programs made arguments analogizing them to the problem in
terms of the shared Factors (i.e., relevant similarities) as well as responses
distinguishing them from the problem in terms of unshared Factors (i.e.,
distinctions). Figure 3 shows arguments CATO generates with Technicon Data
Systems Corp. v. Curtis 1000,48 one of those best untrumped cases a plaintiff
can cite, but one that a defendant can distinguish from K & G.

46. 314 S.W.2d 782 (Tex. 1958).
47. Plaintiff K & G developed a tool to remove metal debris from oil and gas wells. The

internal construction of the device was not generally known in the business. FI5 Unique-Product
(P). There was testimony that the design could be determined by thoroughly examining the tool,
even without disassembling it. F16 Info-Reverse-Engineerable (D). K & G had entered into a
licensing agreement with defendant G & G by which the defendant would sublease the K & G
device to other companies, in exchange for 25 percent of the rentals charged. According to the
agreement, the defendant was prohibited from disassembling plaintiffs device. F6 Security-
Measures (P). It was mutually understood that the purpose of this agreement was to guard against
anyone determining the internal construction of the tool. F21 Knew-Info-Confidential (P).
However, G & G did take apart the device in order to examine its internal construction. F25 Info-
Reverse-Engineered (D). F14 Restricted-Materials-Used (P). The defendant then used information
that it gained from the examination to construct its own device, which was substantially the same
as plaintiffs. F18 Identical-Products (P). The plaintiff had not disclosed information about the
internal construction of its device to others outside its business. Id. at 782-88; see also G & G
Fishing Tool Service v. K & G Oil Tool & Service Co., 305 S.W.2d 637, 638-41 (Tex. Civ. App.
1957).

48. 224 U.S.P.Q. 286 (Del. Ch. 1984).
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-+ Analogize: Where plaintiff took measures to keep its information secret
[F61, defendant used materials that contained confidentiality restrictions
[F14], and defendant knew that plaintiff's information was confidential
[F211, even though plaintiff's information could be discovered by reverse
engineering plaintiffs product [F16] and defendant reverse engineered
plaintiff's product [F25], plaintiff should win a claim of trade secrets
misappropriation, as in Technicon Data Systems Corp. v. Curtis 1000, Inc.,
224 U.S.P.Q. 286 (Del Ch. 1984).

*- Distinguish: Technicon is distinguishable. It is stronger for plaintiff than
is the current problem. In Technicon, plaintiff imposed confidentiality
restrictions in connection with its disclosures to outsiders [F 121. This was not
so in K& G.

-+ Downplay: In Technicon, plaintiff's disclosures to outsiders were subject
to confidentiality restrictions [F 12]. This was not so in K & G. However, this
is not a significant distinction. First, in K & G, defendant used materials that
were subject to confidentiality restrictions [F14] and plaintiff was the only
manufacturer making the product [F15]. Therefore, in both cases, defendant
may have acquired plaintiffs information through improper means (F110,
FIll, F 120). Second, in K & G, plaintiff adopted security measures [F61. In
both cases, therefore, plaintiff took efforts to maintain secrecy of its
information (F 102, F 123).

Figure 3: Sample CATO Arguments About K & G Case

CATO supports two argument moves HYPO did not: downplaying or
emphasizing distinctions. In the example, plaintiff gets the last word, since the
distinction can be downplayed. In downplaying the significance of F12
Outsider-Disclosures-Restricted (P), which Technicon has but K & G does not,
the program uses the information in the Factor Hierarchy, shown in Figure 2,
to draw a more abstract analogy between the cases in terms of issues and
reasons they share despite the difference (i.e., F102, F110, F] 11, F120, P123).

Once Factors were incorporated into hierarchical representations that
informed the model and made more sophisticated arguments, it was a natural
step to see whether the hierarchically represented information about Factor
meanings could be used for prediction. As factual patterns are associated with
a claim's strengths or weaknesses, Factors are assumed to be relevant to the
likely outcome of problems. If additional knowledge about the reasons why
Factors matter, including use in downplaying and emphasizing distinctions,
could be shown to improve the predictions, it would support the conclusion
that CATO's model of argumentation was reasonable.

The argument-based prediction methods assume that if the most relevant
cases for making an argument all favor the same side, that side has a very
strong argument, while the opponent cannot make a stronger, or at least
equally strong, argument. This strategy was implemented in the following
decision rule: retrieve the relevant cases according to some relevance criterion.
If there are relevant cases, and all had the same outcome, predict that side will
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win; otherwise abstain. Aleven defined seven criteria for selecting the most
relevant cases in terms of HYPO's and CATO's argumentation criteria and
tested their predictive value.49 Each relevance criterion employed an increas-
ing amount of CATO's legal argument knowledge. The HYPO-BUC criterion
based a prediction on the best untrumped cases. Another criterion, referred to
as the CATO-NoSignDist criterion, refined HYPO-BUC; it based its predic-
tions on the best untrumped cases among those cases that had no significant
distinctions. A distinction was "significant" if and only if it could be empha-
sized but not downplayed, a criterion unique to CATO's legal argument
model.

CATO's focus on significant distinctions do not make much difference in
predicting the outcome of K & G. The database contains five best untrumped
cases to cite for the plaintiff in K & G, and none for the defendant. The
HYPO-BUC criterion bases its prediction for plaintiff on all five cases. The
CATO-NoSignDist criterion bases its prediction for plaintiff on the same five
cases. On some occasions, however, the CATO-NoSignDist criterion does
filter out cases that are significantly distinguishable from the problem, leading
to different predictions from those made by the HYPO-BUC criterion. Part
III.A. I reports some results illustrating the differences.

II. ISSUE-BASED PREDICTION
While prediction based on case comparisons is not tantamount to predict-

ing outcomes of real-world legal disputes, it is a way of extracting from a
database of cases information relevant to analyzing a problem and of commu-
nicating it intelligibly in the form of a prediction accompanied by explana-
tions. In this sense, prediction can support legal deliberation about a case even
if the prediction is subject to practical limitations. Even when the cases at the
end of a decision tree branch are inconsistent, the induced "rule" acts as an
index to conflicting cases in the database relevant to analyzing a problem. The
example of CATO suggests that programs can do more than simply point to
relevant cases; they can reason intelligently with inconsistent data, make
predictions, and explain them in ways natural for attorneys.

This can be analogized to scientific hypothesis testing of inconsistent data.
The IBP algorithm frames and tests predictive hypotheses concerning the
outcomes of factual disputes against the "experimental data" comprising the
decided cases in a computerized case database. The IBP algorithm, described
in pseudo-code in Figure 4, frames hypotheses predicting which side is
favored and tests them against cases in the database. Given a new dispute
represented in terms of Factors, IBP identifies relevant legal issues based on
its Domain Model, determines which party is favored for each issue, and
combines the analyses into an overall prediction. For each issue, IBP formu-
lates a hypothesis predicting which side is favored for the issue, tests the

49. Aleven, supra note 37, at 214.
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hypothesis against the past cases, and, if the cases are inconsistent, attempts to
explain away the exceptions to the hypothesis. The record of this hypothesis-
testing process serves as a legally natural explanation of its predictions and a
useful summary of how the cases in the database bear upon the legal analysis
of the problem.

Input: Current fact situation (cfs)

A. Identify issues raised by cfs Factors
B. For each issue raised, determine the side favored for that issue:

I. if all issue-related Factors favor the same side, then return that
side,

2. else retrieve issue-related cases in which all issue-related Factors
apply

a. if there are issue-related cases, then carry out Theory-
Testing: form hypothesis that same side s will win that won
majority of cases

i. if all issue-related cases favor side s, then return side s,
ii. else try to explain away exceptions with outcomes

contrary to hypothesis
(a) if all exceptions can be explained away, then

return side s favored by hypothesis
(b) else, return "abstain"

b. if no issue-related cases are found, then call Broaden-Query
i. if query can be broadened, then call Theory-Testing for

each set of retrieved cases
ii. else return "abstain"

C. Combine prediction for each issue

Output: Predicted outcome for cfs and explanation

Figure 4: IBP Algorithm

IBP's Domain Model for trade-secret law is used for identifying relevant
issues in step A and for combining the predictions in step C. The Domain
Model is an interpretation of the trade-secret domain, including the logical
relationships among the issues as well as the factual categories that affect the
outcomes of issues in the cases. 50 As shown in Figure 5 it breaks a trade-secret
claim (Trade-Secret-Misappropriation) into two major elements, both of which
must be satisfied: "Is the information a trade secret?" (Info-Trade-Secret) and

50. The logical relationships among the issues in IBP's Domain Model are drawn from two
sources: (1) "'Trade secret' means information, . . .that: (i) derives independent economic value,.
. . from not being generally known to, and not being readily ascertainable by proper means... and
(ii) is the subject of efforts that are reasonable under the circumstances to maintain its secrecy."
UNIFORM TRADE SECRETS ACT § 1(4) (1985); (2) "One ... is liable [for trade secret
misappropriation if] (a) he discovered the secret by improper means, or (b) his disclosure or use
constitutes a breach of confidence .... RESTATEMENT (FIRST) OF TORTS § 757 (1939).
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"Was the information misappropriated?" (Info-Misappropriated). It further
subdivides each element into issues. Info-Trade-Secret comprises two
conjoined issues: "Was the information of value?" (Info-Valuable) and "Did
the plaintiff maintain secrecy of the information?" (Maintain-Secrecy). Info-
Misappropriated includes three issues "Was there a confidential relationship
between plaintiff and defendant?" (Confidential-Relationship), "Did the
defendant use the plaintiff's information?" (Info-Used), and "Did the defen-
dant employ improper means to access the plaintiff's information?" (Im-
proper-Means). Although the Domain Model captures rules relating the issues,
it does not employ logical rules of conjunction and disjunction to relate
Factors and issues; instead, it merely specifies which Factors are relevant to
each issue.5' Using the Domain Model, IBP can identify which issues the
situation raises given a problem situation's Factors.

STrade-Secret "Misappropriati°4

.I,5 . o () 6. ,eo 4 (4F. R 61.6-TId(p) F I.N p,66A
0
,i ,~6(l 6(4 F. ldl 6- U~o ()

F60. (,,f.K,,,,, (dl 6(. Puk-I ~ () 62. 6,fo.R..i 6 
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d () 623.nilo A~oa p ,6- Rn l7 .,Uo h- o ( d

Figure 5: IBP's Domain Model

IBP's hypothesis formation and testing begins once the issues have been
identified (Figure 4, Step B). Given an issue, if all of the problem's Factors

related to that issue favor the same side, IBP concludes that side will win the
issue. If the issue-related Factors conflict, providing evidence for both sides,

IBP relies on the precedents in its case base to resolve this conflict by calling
its Theory-Testing function. It retrieves the cases in the database that share all
of the issue-related Factors with the problem (i.e., the issue-related cases). If

51. in relating subissues to relevant Factors, and through them to cases in the database
indexed by these Factors, IBP's Domain Model is similar to that of CABARET. See Edwina
Rissland & David Skalak, CABARET: Statutory Interpretation in a Hybrid Architecture, 34 INT. J.
OF MAN-MACHINE STUDIES 839 (1991). Unlike CABARET, however, IBP employs this
reresentation for the purpose of predicting outcomes.
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all these cases were won by the same side, IBP assumes that this side is
favored for the issue in the problem. Sometimes, cases favoring both sides
may be returned, with a majority favoring one side or the other. This suggests
that the hypothesis is the majority side is favored and that the other cases are
exceptions that can be explained away to save the hypothesis. IBP implements
this reasoning by determining which side won the majority of the issue-related
cases. That side is hypothesized to be the favored one for the issue in the
current fact situation. IBP then examines each exception in the minority set
and attempts to explain it away.

IBP explains away such a counterexample by determining whether it can
be distinguished in a special way from the problem and from the cases in the
majority set (the positive instances of the hypothesis). In explaining away
exceptions, IBP looks for alternative explanations for their outcome to save its
hypothesis. It tries to find strong Factors, unrelated to the issue IBP is working
on, to which the exception's outcome can be attributed. Specifically, it
determines whether the exception has certain Factors called Knock-Out (KO-
Factors) that are not related to the issue and that are neither present in the
problem nor in the positive instances of the hypothesis. A Factor is defined as
a Knock-Out if the probability that a side wins when the Factor aplies is at
least 80% greater than the baseline probability of the side's winning.

IBP employs KO-Factors only indirectly by attempting to explain away
past cases that appear to be exceptions to a predictive hypothesis. If IBP finds
a KO-Factor to which the outcome of an exception can be attributed, it does
not treat the exception as a reason to abandon its hypothesis. If IBP cannot
distinguish all exceptions to its hypothesis in this way, it abstains for that
issue.

IBP also defines a category of Weak Factors for which the probability of
the favored side's winning, given that one knows the Factor applies is less than
20% over the baseline probability of the side's winning. While Weak Factors
provide evidence on disputed issues, the courts in the cases in our database
appear not to have treated them as sufficient on their own to raise an issue.
Weak Factors are more relevant in the context of other Factors. If the only
issue-related Factor in a case is weak, IBP regards the issue as not having been
raised and does not pose a hypothesis to test concerning that issue. For
instance, if a case has Factor FIO Info-Disclosed-Outsiders (D) and no other

52. The former probability is calculated as the number of cases where the Factor applies and
the side won divided by the number of cases in the collection where the Factor applies. The
baseline probability is calculated as the number of cases where the side won divided by the
number of cases in the collection. There is also a semantic requirement; a KO-Factor must
represent behavior that is paradigmatically proscribed or encouraged under trade secret law. IBP's
list of KO-Factors includes: F8 Competitive-Advantage (P) (i.e., defendant saved development
time and money by using plaintiffs information), Fl 7 Info-Independently-Generated (D), F19 No-
Security-Measures (D), F20 Info-Known-to-Competitors (D), F26 Deception (P), F27 Disclosure-
In-Public-Forum (D).
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Factors related to the issue of Security-Measures, IBP ignores that issue for
purposes of formulating predictive hypotheses. 53

If no cases in the database share all of the issue-related Factors in the
problem, IBP tries to broaden the query. It relaxes its constraints (Figure 4,
Step B.2.b) to see if a more general but still pertinent hypothesis can be tested.
If two or more issue-related Factors favor a side, IBP removes each one in turn
from the query. Using the new queries, it tries to find cases that share the less
inclusive set of Factors, carrying out the same hypothesis testing as above. If a
case retrieved by one of the new queries favors that side, one may conclude
the problem is even stronger for that side given the dropped Factors. If the
query cannot be broadened, or if it can be broadened for both sides, IBP
abstains on the issue.

The following example shows IBP's approach to prediction and how it
differs from CATO's. IBP's output for the K & G case of Figure 2 is shown in
Figure 6. Using the Domain Model, IBP identifies four relevant issues:
Maintain-Secrecy, Confidential-Relationship, Info-Valuable, and Info-Used.
IBP predicts plaintiff is favored for all issues and, thus, that plaintiff will win
the case. For Maintain-Secrecy and Confidential-Relationship, IBP finds no
conflicts among the issue-related Factors and concludes that plaintiff is
favored.

For the issue Info-Valuable, however, IBP finds conflicting Factors and
carries out hypothesis testing. It retrieves the cases that share these issue-
related Factors: seven cases won by plaintiff, one by defendant. Since more
cases favor plaintiff, IBP hypothesizes that plaintiff is favored on that issue.
The hypothesis is that where F16 Info-Reverse-Engineerable (D) and F15
Unique-Product (P) apply in a trade secret misappropriation case, plaintiff is
favored for that issue Info-Valuable.
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Prediction for KG, which was won by PLAINTIFF
Factors favoring plaintiff: (F21 Fi8 F15 F14 F6)
Factors favoring defendant: (F25 Fi6)

Issue raised in this case is MAINTAIN-SECRECY
Relevant factors in case: F6(P)
The issue-related factors all favor the outcome PLAINTIFF.

Issue raised in this case is CONFIDENTIAL-RELATIONSHIP
Relevant factors in case: F21(P)
The issue-related factors all favor the outcome PLAINTIFF.

Issue raised in this case is INFO-VALUABLE
Relevant factors in case: FI6(D) F15(P)

Theory testing has no clear outcome, try to explain away exceptions.
Cases won by plaintiff:

AMERICAN-CAN (F4 F6 F15 FI6 FIB)
HENRY-HOPE (F4 F6 F15 F16)
ILG-INDUSTRIES (F7 FLO F12 FI5 Fi6 F21)
KAMIN (FI FiG F16 FIB F15)
KUBIK (F7 Fi5 FI6 FIB F21)
MASON (FI5 FI6 F6 F21 Fl)
TELEVATION (F6 Fi0 F12 Fi5 F16 Fi8 F21)

Cases won by defendant:
NATIONAL-REJECTORS (F7 FI0 Fi5 Fi6 Fi8 Fi9 F27)

Trying to explain away the exceptions favoring DEFENDANT
NATIONAL-REJECTORS can be explained away because of unshared
ko-factor (s) (F27 Fi9).

Issue raised in this case is INFO-USED
Relevant factors in case: F25(D) FlB(P) F14(P)

Theory testing did not retrieve any cases, broadening the query.
For INFO-USED, the query can be broadened for PLAINTIFF.
Each pro-P Factor (F14 FIB) is dropped for new theory testing.

Theory testing with Factors (F14 F25) gets the following cases:
TECHNICON PLAINTIFF F6 FIG F12 Fi4 Fi6 F21 F25)

In this broadened query, PLAINTIFF is favored.
Theory testing with Factors (FIB F25) gets the following cases:

MINERAL-DEPOSITS PLAINTIFF Fl Ft6 FiB F25)
In this broadened query, PLAINTIFF is favored.

By a-fortiori argument, the PLAINTIFF is favored for INFO-USED.
Therefore, PLAINTIFF is favored.

Outcome of the issue-based analysis:
For issue CONFIDENTIAL-RELATIONSHIP, PLAINTIFF is favored.
For issue INFO-VALUABLE, PLAINTIFF is favored.
For issue INFO-USED, PLAINTIFF is favored.
For issue MAINTAIN-SECRECY, PLAINTIFF is favored.

=> Predicted outcome for KG is PLAINTIFF, which is correct.

Figure 6: IBP's Output for the K & G Case
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Seven cases are consistent with the hypothesis, but National Rejectors is
an exception.54 IBP succeeds at explaining away this exception; it finds two
Knock-Out Factors in National Rejectors that do not apply to the K & G
problem: F19 No-Security-Measures (D) and F27 Disclosure-In-Public-Forum
(D). In National Rejectors, F19 captures the fact that the plaintiff had not
taken security measures. This Factor does not apply to the K & G case, or to
any of the other retrieved cases. It is also not related to the issue Info-Valu-
able, which focuses on the value of the information to competitors. It is
reasonable to assume that in National Rejectors, the defendant won because of
a lack of security measures and not because of facts related to the issue Info-
Valuable. Moreover, National Rejectors has Factor F27, which allows a
similar inference. IBP thus successfully explains away National Rejectors and
concludes that plaintiff is favored for the issue Info-Valuable.

For the issue Info-Used, IBP again finds conflicting Factors. Two of these
Factors favor plaintiff, and one favors defendant, but IBP cannot retrieve any
cases that have all three issue-related Factors. It succeeds in broadening the
query for plaintiff by dropping each of the pro-plaintiff Factors in turn. Each
time the query is broadened, the argument becomes weaker for the plaintiff,
but IBP still retrieves only pro-plaintiff cases. Consequently, IBP concludes
that for this issue plaintiff is favored a fortiori, which presents an even
stronger pro-plaintiff scenario.

IBP combines its analysis of the issues using the Domain Model. Since
plaintiff is favored on all four issues, it predicts plaintiff will win the K & G
case. IBP's explanation of its prediction is a summary of its process of
identifying issues, forming hypotheses and testing them for each issue, and
combining issue analyses into an overall prediction. It represents an interpre-
tation of the legal significance of the problem's facts given its Domain Model
and the cases in the database.

IBP's explanation is not intended to embody the same analysis as the
court that decided a case. Among other things, the court uses a different
knowledge base of cases, and courts' case analyses and rationales are not
represented in IBP's case representation or in the Case Database. Nevertheless,
it is instructive to compare IBP's analysis of a case like K & G with the court's
and with CATO's. In its opinion in the K & G case, the Texas Supreme Court
wrote:

The Court of Civil Appeals was of the opinion that [plaintiffs'] magnetic
fishing tool was not subject to protection as a 'trade secret,' primarily
because ... witnesses ... testified that they could reconstruct the [plaintiff's]
tool without first disassembling it. It may be that they could, but this hardly
reaches the controlling point or issue in the case. According to the jury's
findings, which were not attacked, G & G did not learn how to make the...
tool ... by observing it in an assembled or unbroken condition but learned of
its internal proportions, qualities and mechanisms by taking it apart despite

54. Nat'l Rejectors, Inc. v. Trieman, 409 S.W.2d I (Mo. 1966).
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an agreement that it would not do so. We have here the violation of a
confidence and the breach of a contract. Under such circumstances, the
injured party is entitled to full relief, both legal and equitable .... 5'

Both IBP and the court address the issues of whether there was a breach of
a confidential relationship, and whether information is of sufficient value to be
a trade secret where it is subject to being reverse engineered. They address the
issues somewhat differently, however. The court treats them more as a conflict
of issues: where there is a violation of a confidence even though the informa-
tion might have been reverse engineered. In this respect, its argument is like
CATO's argument in Figure 3. By contrast, IBP treats the issues separately,
and predicts plaintiff would win both issues. Its analysis regarding Info-
Valuable finds cases where the product's uniqueness (Factor F1l5 Unique-
Product (P)) overcomes the effect of the fact that the information is reverse
engineerable. The interpretations are different, but not wildly so, and all seem
reasonable.

In this example, IBP's prediction for K & G agrees with CATO's
predictions using both the HYPO-BUC and CATO criteria of Part I.D.2, and
all of these predictions happen to be correct. To get a better sense of how these
predictive methods compare, Part III analyzes them over a wider range of
cases.

III. COMPARATIVE EVALUATION
OF IBP AND OTHER METHODS

Prediction can be seen as a way of extracting from a database of cases
analytical information relevant for deliberating about a problem and of
communicating that information intelligibly and succinctly in the form of the
prediction and accompanying explanation. Testing predictive legal hypotheses
against data and attempting to explain away counterexamples, as in scientific
hypothesis testing and in IBP, is an effective way to implement prediction. By
virtue of its explanations, it is potentially a more useful way to implement
intelligent retrieval from legal databases than the plausible alternatives.

This hypothesis was tested by comparing various computerized tech-
niques for making predictions from labeled examples in a database of cases.
Each technique was run in the same experimental setup on the same collection
of cases, with CATO's database of 184 trade secret misappropriation cases
represented in terms of Factors. Plaintiffs won 108, and defendants won 76 of
these cases. This database was assembled at two different times, both prior to
the invention of IBP: 148 cases were collected for the original CATO program
and 36 additional cases had been collected for a different purpose. For this
experiment, the cases were converted from their Factor representation into

55. K & G Oil Tool & Service Co. v. G & G Fishing Tool Service, 314 S.W.2d 782, 787
(Tex. 1958).
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ordered lists of binary features indicating which factors applied, together with
the outcome, plaintiff or defendant, encoded as the class label.

The experiment involved three types of algorithms with complementary
strengths. Although each algorithm was run on the same set of cases, they
make different uses of that information, as discussed in Table 2.

Table 2: Prediction Algorithms Compared

Type Algorithm Description

I. Rule learning C4.5 Induces decision trees
Algorithms Induces rules with a covering

Ripper algorithm

Induces rules and combines
available evidence

2. Case-Based algorithms kNN/IBI Classic k Nearest Neighbor

Decision rule based on best
untrumped cases

Decision rule based on best
CATO-NoSignDist untrumped cases without

significant distinctions
IBP Issue-based hypotheses tested

against cases
Hypotheses tested against cases

IBP-Cases without issues derived from
Domain Model

IBP-MOdel Issue-based analysis without
hypotheses tested against cases

3. Statistical learning Logistic Regression Statistical methods using logistic
Algorithms regression

Natve Bayes Uses statistical weighting

Other Baseline Predict majority class (plaintiff)

A. The Prediction Algorithms Compared

The first type of algorithms used in this experiment include learned rules
or classifiers that can be expressed as rules. C4.5 is a decision-tree learning
algorithm5 6 and a successor to the ID3 algorithm discussed above in Part I.C.
Most notably, C4.5 can deal with impure leaf nodes and includes functions for
pruning or simplifying the induced tree by removing unnecessary nodes and
branches, which often leads to improved performance. For comparability, the
decision trees were automatically converted to rules. Ripper, the second rule
learning program,57 was designed to generate efficient rules that are more

56. See QUINLAN, supra note 31.
57. William Cohen, Text Categorization and Relational Learning, PROCEEDINGS OF THE

TWELFTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING 124-32 (1995).
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reminiscent of "rules of thumb." It incrementally adds rules that cover the
training data in a patchwork-like manner and also generalizes from impure
subsets. While C4.5 tends to overfit the data by inducing overly specific trees,
Ripper's rules tend to be very simple and intuitive.58 The third algorithm is the
data-mining program RL. 59 It follows a different strategy and works in two

60steps. Some of the rules RL used were similar to those learned by Ripper.
The majority of the rules, however, captured which side is favored by the
Factors that are highly correlated with the case outcome. 61 Finally, it learned

62some rules that seem intuitively sensible from a legal viewpoint.

58. When run on the full data set, Ripper learned five rules. Id. There are four prodefendant
rules about when the plaintiff certainly will lose and a proplaintiff default rule. The numbers in
parentheses indicate, respectively, the number of times the rule fired and the number of those
firings which led to erroneous predictions for the training set:

I. If F20 Info-Known-to-Competitors (D) applies then predict DEFENDANT (31/I).
2. If F6 Security-Measures (P) does NOT apply and F19 No-Security-Measures (D) applies then

predict DEFENDANT (18/2).
3. If F27 Disclosure-tn-Public-Forum (D) applies and F8 Competitive-Advantage (P) does NOT

apply then predict DEFENDANT (7/1).
4. If F24 lnfo-Obtainable-Elsewhere (D) applies, then predict DEFENDANT (6/2).
5. Otherwise, predict PLAINTIFF (101/I 5).
Ripper's pro-plaintiff default rule is reflected in the CATO database, in which there are more

cases won by plaintiff than by defendant. The baseline algorithm used for comparing the
prediction algorithms relies on the same information and predicts the majority class no matter
what the facts of the new problem. In the CATO data set, this means predicting that plaintiff wins.

59. Foster Provost et al., Rule-Space Search for Knowledge-Based Discovery,
http://pages.stem.nyu.edu/-fprovost/Papers/rule-search.pdf (last visited May 1I, 2006).

60. First, it derives rules from the labeled examples in the training set. Given a training
example, RL identifies candidate rules that may explain the outcome of the case. It collects the
rules that are most predictive for the entire training set and keeps track of their success rates. In
contrast to Ripper, RL uses a covering algorithm with replacements. If Ripper finds a rule that
correctly predicts a set of cases, it considers these cases covered and removes them from the
training set. On the other hand, RL retums these cases in the training set. Ripper's strategy works
well when there is only one explanation for the outcome of a case. In more complex domains,
however, where more than one aspect of a case may contribute to its outcome, RL may be more
effective. Second, when a new and previously unseen case is classified, RL considers all
applicable rules, and if necessary, assigns weights to them. RL has a number of techniques for
identifying candidate rules and assigning weights to conflicting evidence in the classification
phase.

61. For instance, "If Fl5 Unique-Product (P) applies then outcome = plaintiff' and "If F6
Security-Measures (P) applies, then outcome = plaintiff." It also learned some complementary
rules, such as "If F6, Security-Measures (P) does not apply, then outcome = defendant."

62. "If F4 Agreed-Not-to-Disclose (P) does not apply and F21 Knew-Info-Confidential (P)
does not apply then outcome = defendant." In other words, the rule says, where defendant did not
enter into a nondisclosure agreement, and where the defendant was not on notice that the
information was secret, the defendant will win.
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The second type of algorithms in this experiment comprised case-based
learning algorithms. There were two different kinds: an algorithm (1131) that
computes similarity using a numeric function,63 and several algorithms that
were developed from HYPO's afortiori model. 64

The third type of algorithms can be characterized as statistical learning
methods. These algorithms use advanced statistical models to compute a
prediction. In this experiment, we included logistic regression, the statistical
method described in Part I.B. We employed a data mining package to perform
logistic regression 65 and ran it as is without performing any feature selection.
As mentioned above, the performance of this algorithm can be improved
through feature selection, which may require considerable expertise to get the
maximum benefit. We used a standard automated method, and, given our
focus on fully-automated processes and our preference for methods that can
generate legally intuitive explanations (which logistic regression cannot), we
did not further pursue this trial-and-error process of selecting features in
search of more accurate predictions.66

We also included Nai've Bayes, another statistical ML algorithm that
classifies a new instance by assigning the most probable target value given the
attributes that describe the instance. Specifically, it calculates the probability
that a side wins given the case's Factors, P(outcomelfactors), for each of
"plaintiff wins" and "defendant wins," and then picks the more likely winner.
However, this target function cannot be calculated directly from the available
data. Therefore, the algorithm relies on small pieces of evidence, easily
observable probabilities, and combines them using Bayes Rule to calculate the
above values. The Nai've Bayes algorithm makes a simplifying assumption of
independence among the descriptors given the target value. s

63. IB I is a case-based learning algorithm that implements a nearest neighbor approach
similar to that described in Part i.A. The algorithm uses a similarity function to identify the most
relevant cases for a problem, its nearest neighbors, based on which a prediction is made. Similarity
in IBI is defined as the Euclidean (or straight-line) distance between the examples, a different
distance metric than that used in MacKaay's kNN approach discussed in Part I.A.

64. The HYPO-related case-based prediction algorithms do not compute numerical
similarity; they rely on symbolic reasoning and arguments comparing cases. The HYPO-BUC and
CATO-NoSignDist algorithms have been described above in Part I.D.2. Part II describes the IBP
prediction algorithm. Also included are two variations of the IBP algorithm, IBP-Cases and IBP-
Model, discussed below.

65. See generally, IAN H. WITTEN & FRANK EIBE, DATA MINING: PRACTICAL MACHINE
LEARNING TOOLS AND TECHNIQUES (2d ed. 2005).

66. Using a different statistical package, another student used a best fit logistic regression to
identify eight Factors that most strongly correlated with case outcomes in the original CATO
database of 148 cases and then applied it to predict the outcomes of the later 36 cases, obtaining an
accuracy of 86%. C. Allen Black, Statistical Predictions of Case Outcomes Using the CATO
Dataset (2003) (unpublished student paper, University of Pittsburgh School of Law) (on file with
author).

67. TOM MITCHELL, MACHINE LEARNING 177 (1997).
68. Two events are independent if the occurrence of one event does not have an impact on

the other's probability. In this context, independence means that the probability of observing a
particular list of Factors is equal to the product of the probabilities that each individual Factor is
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1. Experimental Design

The 184 cases in the CATO/IBP database on which each algorithm was
run were drawn from a variety of state and federal courts. The opinions vary
from trial court through the highest appellate courts. For each case, the
database includes the opinion on substantive issues of the highest level court to
consider the case. The cases span a period of decades. Most date from the
1970s through 1990s; some are earlier. The dates of the cases, the jurisdiction,
and the court level were not taken into account by any prediction method in
these experiments.

The experiments were run in a leave-one-out cross-validation. This
procedure is widely used in ML experiments and guarantees that the training
and test sets never overlap. For each algorithm the test case was removed from
the database, a procedure that was repeated 184 times (once for each case). Its
outcome was hidden, and only its Factors were visible. The classifiers were
trained on a training set of the remaining 183 cases and then used to predict
the outcome of the test case. The predicted outcome was compared to the
previously hidden real outcome of the test case to determine if the prediction
was correct, a mistake, or an abstention. The result was recorded. The test case
was then returned to the database.

A number of the algorithms offer a variety of parameters for experimenta-
tion; we ran all of the algorithms with their default parameter settings except
for RL, for which we selected settings likely to work best.

2. Result

Each algorithm's accuracy is reported in Table 3; the results are visualized
in Figure 7. Accuracy is defined as the number of correct predictions divided
by the number of cases included in the experiment, which comprises the sum
of the correct predictions, incorrect predictions, and abstentions. IBP predicted
the outcome of 169 cases correctly, made 14 errors, and abstained once for an
accuracy of 91.8%. RL was the runner-up to IBP with an accuracy of 88%,
followed by NaYve Bayes with 86.4% accuracy. Of the other rule learning
programs, C4.5 did better, coming in fourth with an accuracy of 85%; Ripper
achieved 83%.

observed. Using this assumption, probabilities for individual Factors were computed simply by
counting cases in the database. Although this assumption often is not satisfied (and therefore is
called "naive"), in many applications it does not have a large effect on the result. We did not try
another computerized prediction algorithm that has been used for legal applications, a
connectionist or neural network. For instance, the Split-Up program predicted marital property
divisions in divorce cases. Explaining predictions is difficult for a connectionist system because
the information on which the prediction is based is distributed among weights. Interestingly, Split-
Up hierarchically organizes multiple specialized networks by issues from which explanations can
be generated. See John Zeleznikow et al., Project Report: Split-Up - A Legal Expert System which
Determines Property Division Upon Divorce, 3 ARTIFICIAL INTELLIGENCE AND LAW 267 (1995).
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Table 3: Correct Predictions, Abstentions, Errors,
Accuracl,, and Significance for Each Prediction Algorithm

Significance69
Algorithm Correct Abstain Errors Accuracy Probability

IBP 169 1 14 0.918 ---

RL 162 0 22 0.880 0.08

NaYve Bayes 159 0 25 0.864 0.03

IBP-Cases 144 30 10 0.783 0.00
CATO-
NoSignDist 143 22 19 0.777 0.00

C4.5 156 0 28 0.848 0.01
Logistic
Regression 154 0 30 0.837 n/a

Ripper 152 0 32 0.826 0.00
Nearest
Neighbor 151 0 33 0.821 0.00

HYPO-BUC 125 50 9 0.679 0.00

IBP-Model 132 38 14 0.717 0.00

Baseline 106 0 78 0.576 0.00

69. The significance probability (p-value) indicates whether the differences between IBP's
performance and that of each other algorithm in the experiment are statistically significant. It is the
probability of a difference as large or larger than the observed difference assuming that the true
difference is zero. Generally, p < 0.05 is considered indicative of a true difference. We used
McNemar's test. See Thomas Dietrich, Statistical Tests for Comparing Supervised Classification
Learning Algorithms, Oregon State University Technical Report 13 (1996). Essentially, one goes
through every one of the incorrectly predicted cases and scores which algorithm does better. Since
some of the algorithms make abstentions (e.g., IBP and the case-based argumentation algorithms),
we adapted the test by counting a correct prediction as "better" than an abstention and an
abstention as "better" than an error. The difference between the accuracy of IBP and RL, the
runner-up, was not significant (p = 0.08). The other differences were significant. The software we
used did not allow for a comparison between IBP and Logistic Regression.
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Figure 7: Comparison of Prediction Algorithm Accuracy

B. Discussion

IBP's hypothesis-testing approach has two advantages over the alterna-
tives. Not only does IBP most accurately predict how cases will be decided
based on past cases in its database, but it also generates an explanation of its
predictions in terms an attorney can assess. In analyzing the results, it is
helpful first to consider the sources of IBP's successful predictions and the
reasons for its failures.

1. Why IBP Works

Since IBP was developed with CATO's Case Database, we first ruled out
that IBP had been optimized with respect to these 148 cases. As noted, 36
cases had been collected for a different purpose and were not added to the
collection until after IBP was completed; IBP's predictions for these 36 cases
were no less accurate than for the initial 148.

To investigate the sources of IBP's successful predictions and related
questions, we created two ablated versions of IBP called IBP-Cases and IBP-
Model. An ablated version of a program is one in which particular components
or knowledge sources have been "turned off." The ability to ablate a computa-
tional model's features or knowledge allows one to investigate systematically
the sources of its power.

The first ablated version, IBP-Cases, made predictions using only cases. It
had no knowledge about issues; that is, it had no access to the information
about issues in IBP's Domain Model shown in Figure 5. Instead, IBP-Cases, in
effect, implemented only the ultimate "issue," which is whether plaintiff
should win the claim of trade secret misappropriation. IBP-Cases used the
same database of cases as IBP. Since it dealt with only the ultimate "issue,"
IBP-Cases would first consider all of the problem's Factors together. If they
conflict in the Theory-Testing function, it would seek cases that share all of
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the Factors and hypothesize that the side with the majority of such cases wins.
The explaining away of counter-examples had to be modified because there
was only one issue; IBP did not require that the KO-Factors be related to a
different issue. If IBP-Cases failed to find any cases with all of the problem's
Factors, it would broaden the query by systematically dropping Factors until it
found cases with which to formulate and test a weakened prediction hypothe-
sis. A minor technical modification was necessary to enable it to broaden
queries.

By contrast, IBP-Model made predictions using only the issues and
Factors in its Domain Model. It could not access cases. For each issue in a new
problem, IBP-Model simply tested whether all of the issue-related Factors
favored the same side. If so, IBP-Model inferred that side was favored for the
issue; otherwise, it abstained. Since IBP-Model did not reason with prece-
dents, it could not carry out Theory-Testing, explain away exceptions, or
broaden queries.

IBP performed significantly better (91.8% accurate) than IBP-Cases
(78.3% accurate). IBP abstained less frequently than IBP-Cases at the cost of
four additional errors. IBP predicted cases correctly considerably more often
than I BP-Cases (169 vs. 144), offsetting the additional errors.

Since IBP and IBP-Cases both employ the same cases and case
representation, we conclude that knowledge of issues as represented in IBP's
Domain Model accounts for IBP's more accurate predictions. 70 The intermedi-
ate legal issues contribute to IBP's predictive accuracy. As the K & G example
in Figure 6 illustrates, IBP's knowledge about legal issues focuses Theory-
Testing on Factors related to an issue rather than on all of the Factors in the
problem. IBP-Cases' queries are more frequently unproductive because they
fail to focus adequately on particular issues and on the conflicting Factors
relevant to those issues. For two of the issues in K & G, IBP's issue-based
analysis retrieves and analyzes cases before predicting an outcome.

Intuitively, it makes sense that including legal issues improves predictive
accuracy. Our Factor representation of cases does not include the judges'
reasoning. It reflects neither judges' opinions about which issues were most
crucial nor their rationales in resolving any conflicts. Judges who decide trade
secret misappropriation cases, however, are aware of and refer to the legal
issues identified in the Restatement and Uniform Trade Secrets Act provisions,
the same issues reflected in IBP's Domain Model. In formulating hypotheses
about which party will win, IBP uses as its conceptual framework the "right"
background knowledge about legal issues. When IBP uses its Domain Model
to construct rationales relating Factors to issues, and ultimately, to outcomes, it
employs issues that judges also employ. Its rationales therefore are likely to be
legally reasonable. Without this conceptual framework, the hypotheses are not

70. Kevin Ashley & Stefanie Braninghaus, A Predictive Role for Intermediate Legal
Concepts, PROCEEDINGS 16TH ANNUAL CONFERENCE ON LEGAL KNOWLEDGE AND INFORMATION

SYSTEMS 153-62 (2003).
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as successful for prediction, are too conceptually unfocused, and fail to
correspond to the Factors' significance and meaning. For legal and technical
reasons, it is very difficult computationally to represent judges' rationales in
legal opinions, as in the GREBE program. 7 1 IBP's ability to generate accurate
predictions and reasonable explanations even without representing judicial
rationales is therefore significant.

While the Domain Model makes IBP's predictions more accurate, it alone
is not sufficient. IBP-Model took only the legal issues and corresponding
Factors into account; it could not use cases to make predictions. As shown in
Table 3 and Figure 7, it did not perform as well as IBP, achieving an accuracy
of only 71.7% and abstaining often. In all 38 cases where IBP-Model ab-
stained, the issue-related Factors favored both sides. Without access to cases,
however, IBP-Model could not resolve these conflicts. Significantly, for all 38
cases where IBP-Model abstains, IBP's predictions were correct. Framing
predictive hypotheses around issues and testing them against past cases result
in greater accuracy.

2. Analysis of IBP's Errors
We next analyzed IBP's errors and found that a number of cases in the

collection are very hard or even impossible to predict correctly. Based on the
expected error distribution, we identified those cases that most or all of the
prediction algorithms get wrong.72 More than half of IBP's errors are on these
anomalous cases. There are four main reasons why a case could be anomalous:
(I) a case's Factor representation omitted a feature that the court deemed
important; (2) although the Factor representation captured relevant facts, it
failed to capture important details; (3) there were interpretive errors in
manually assigning Factors by case enterers; or (4) the court's resolution of
conflicting Factors was unique across the database of cases. 73

First, in some cases, the Factor representation of the case omitted a feature
that the court deemed important. In Burten v. Milton Bradley Co.,

74 the
plaintiff submitted a proposal for a new board game to the defendant toy
manufacturer and signed a form in which it acknowledged that there was no
confidential relationship between the parties.75 After ostensibly rejecting the
idea, the defendant came out a year later with a very similar game.76 The court
held for the plaintiff even though he had signed a waiver of confidentiality, a
fact represented in the CATO version of the case with Factor F23, Waiver-of-

71. L. KARL BRANTING, REASONING WITH RULES AND PRECEDENTS - A COMPUTATIONAL
MODEL OF LEGAL ANALYSIS 111-34 (1999).

72. In the ML literature, such cases are often called noisy and removed from the collection to
increase accuracy. For legal reasoning, however, these cases are binding precedents that cannot be
deleted.

73. Braninghaus & Ashley, supra note 38, at 240-41.
74. 763 F.2d 461 (1st Cir. 1985).
75. Id. at 462.
76. Id.
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Confidentiality (D).7 7 The court decided that the signed agreement was
ambiguous, and that the jury correctly determined that it did not apply, a
consideration for which CATO has no corresponding Factor.78 As a result, all
algorithms in the experiment predicted Burten incorrectly.79

Second, in some cases, the Factor representation failed to capture
important details. For instance, Factor F16 Info-Reverse-Engineerable (D)
applies in CATO's representation for the prodefendant case of Speciner v.
Reynolds Metals Company,80 but IBP predicts that plaintiff will win based on
other factors. Factor F16 applies when the plaintiff's information can be
learned by reverse engineering. The court gave more significance to the fact
that the product could be reverse engineered with only minimal effort, holding
that marketing the product effectively disclosed the information. 8' All
algorithms predicted Speciner incorrectly. A dimensional representation of
Factors 82 could account for how little time or effort it takes to reverse engineer
the product, emphasizing a Factor's significance in a particular case.

Third, some errors result from faulty interpretive decisions by case
enterers in manually assigning Factors to a case. For instance, to represent the
measures that plaintiff took in maintaining the security of its information,
CATO offers two choices: Factor F6 Security-Measures (P), which represents
that plaintiff took such measures, and Factor F19 No-Security-Measures (D),
which represents that plaintiff did not. In Junkunc v. S.J. Advanced
Technology and Manufacturing Corp.,83 the plaintiff took several isolated
measures to maintain secrecy of its information. Since the court explicitly
listed these measures, the case enterer applied Factor F6.84 IBP predicted
plaintiff would win, but the court held for defendant, apparently placing more
significance on the several security holes than on the existing but ineffective
security measures.8 5 On the other hand, CATO's representation of Allen
Manufacturing Company v. Loika,s6 employs F19 because the plaintiff had
taken only minimal measures to protect the information and had left many
gaping security holes. The court, however, apparently decided that even
minimal measures were sufficient.87 Both representational choices contributed
to IBP's erroneous predictions for each case.

Fourth, in some cases, the court's resolution of conflicting Factors was
unique across the database of cases, indicating that more cases of that type are

77. Id. at 466.
78. Id. at 467.
79. Id. at 466.
80. 177 F.Supp. 291 (S.D.N.Y. 1959), aff'd, 279 F.2d 337 (2d Cir. 1960).
81. Id. at 296.
82. See ASHLEYsupra note 19, at 107.
83. 498 N.E.2d 1179 (111. App. Ct. 1986).
84. Id. at 1183.
85. No algorithm included in the evaluation predicted Junkunc correctly. Using HYPO's

dimensional approach, one could represent the set of measures plaintiff took, including "none."
86. 144 A.2d 306 (Conn. 1958)
87. Id. at 310.
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needed or that the court in a particular case regarded a certain fact as extraor-
dinarily significant. For instance, IBP and the other prediction algorithms all
mistakenly predicted that plaintiff would win in Wexler v. Greenberg."8 The
court held that the defendant, a former employee, was justified in disclosing
plaintiff's process because, while working for the plaintiff, the defendant was
the sole developer of the information. s9 The court's protecting an employee
from a postemployment restraint on competition is not unusual in trade secret
law, but this case happened to be the only such example in the CATO
database, contributing to IBP's erroneous prediction. In two other cases where
IBP made errors, the CATO database contained similar cases, but the courts'
resolutions of the two cases were unique. In Franke v. Wiltschek,90 the court
held for plaintiff despite weaknesses on the issue of whether the information
was really a trade secret, appearing to regard the defendant's breach of a
confidential relationship as of paramount importance. 9' Similarly, in Goldberg
v. Medtronic,92 the plaintiff won even though the information had been
generally known and had been disclosed to third parties, apparently because
the defendant used information it had obtained in breach of a confidential
relationship with the plaintiff.93

Sometimes, the court itself may be in error, which may account for the
uniqueness of the resolution in CATO's database. A counterexample that is an
anomalous case because of a court's error could cause the program to abstain
when it need not do so. Of course, the question arises how one can tell if the
court is in error. Uniqueness of a decision among a large number of indistin-
guishable cases is one criterion. For instance, the unique case may reflect a
social change in value preferences that require a different resolution. There are
some "objective" criteria for determining that a court was mistaken. Subse-
quent court opinions may call the decision into question or even overrule it.
The decision will be "yellow-flagged" or "red-flagged" in the full-text legal
databases. For instance, the Goldberg decision was subsequently criticized and
has been assigned a yellow-flag in the Westlaw database, indicating that the
court in a later decision declined to follow the decision in Goldberg.

As noted, IBP attempts to explain away counterexamples by identifying
KO-Factors. However, the presence of warning flags or other types of
cautionary indicators could help to "explain away" a counterexample and
avoid unnecessary abstentions. Another approach involves downplaying or
emphasizing distinctions using CATO's Factor Hierarchy. Still another

88. 160 A.2d 430 (Penn. 1960).
89. Id. at 437.
90. 209 F.2d 493 (2d Cir. 1953).
91. Id. at 494-95.
92. 686 F.2d 1219 (7th Cir. 1982).
93. Id. at 1226-28.
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involves reasoning about the case in terms of preferences among the underly-
ing normative values at stake in cases of this type.94

Probably, no computer model can achieve 100% accuracy for a large
database of real cases realistically represented. The representations always
leave something out, and even if not, real cases are sometimes remarkably
balanced, the precedents conflict, or the precedents are wrongly decided.

3. IBP v. the Next Four: RL, Nafve Bayes, C4. 5, and Ripper

In terms of accuracy, RL is a close second to IBP, and the difference
between them is not significant. Its design seems well-suited to learning from
cases like those in the CATO database that are: (1) used to resolve conflicting
evidence; and (2) more complex in that more than one aspect of a case may
contribute to its outcome. IBP uses issues from its Domain Model to represent
these multiple case aspects. RL does not employ issues, but it employs other
techniques. As noted, it identifies and retains alternative candidate rules that
may explain a training case's outcome and keeps track of their success rates.
In the classification stage, it applies all applicable rules, and, if necessary,
assigns them weights to resolve conflicting evidence. RL's use of a covering
algorithm with replacements also helps. RL does not remove training cases
that have been covered by a learned rule as other algorithms do. Instead, these
cases stay in the training set where they may lead to learning other rules
focusing on different aspects of the case.

The third-ranking algorithm, NaYve Bayes, achieves high accuracy,
95confirming previous findings. Interestingly, it also achieves this accuracy

without using domain knowledge such as that represented in IBP's Domain
Model. Theoretical and empirical studies across a variety of learning domains
have shown that NaYve Bayes is useful where sample size is small and that it is
an optimal learner for conjunctive and disjunctive concepts, even though these
violate the independence assumption. 96 As Ripper's induced rules suggest, one

94. See Trevor Bench-Capon & Giovanni Sartor, Theory Based Explanation of Case Law
Domains, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE

AND LAW 12-21 (2001); Trevor Bench-Capon & Giovanni Sartor, A Model of Legal Reasoning
with Cases Incorporating Theories and Values, 150 ARTIFICIAL INTELLIGENCE 97, 97-143
(2003); Allison Chorley and Trevor Bench-Capon, AGATHA: Automated Construction of Case
Law Theories Through Heuristic Search, PROCEEDINGS OF THE TENTH INTERNATIONAL
CONFERENCE ON ARTIFICIAL INTELLIGENCE AND LAW 45-54 (2005). In the latest work modeling
legal argumentation as theory construction, the AGATHA program generated predictions
comparable to IBP's in accuracy but for a reduced case base. Although the program makes use of
value preferences, it is not yet clear how such generated theories inform useful explanations or
square with statutory texts, similar to the Uniform Trade Secret Act or the authoritative
Restatement, provisions of which IBP's Domain Model interprets.

95. See Aleven, supra note 37.
96. See Pedro Domingos & Michael Pazzani, Beyond Independence: Conditions for the

Optimality of the Simple Bayesian Classifier, PROCEEDINGS, THIRTEENTH INTERNATIONAL
CONFERENCE ON MACHINE LEARNING 105-112 (1996); Pedro Domingos & Michael Pazzani, On
the Optimality of the Simple Bayesian Classifier under Zero-One Loss, 29 MACHINE LEARNING
103, 103-30 (1997).

46 JURIMETRICS



Computer Models for Legal Prediction

can treat the concepts "plaintiff wins" or "defendant wins" as conjunctive and
disjunctive concepts involving KO-Factors. Indeed, NaYve Bayes' computa-
tions of Factor probabilities are similar to those used in the definition of KO-
Factors. Upon inspecting the final weight vector Naive Bayes generates, we
found generally that IBP's KO-Factors had been assigned high weights, and its
weak Factors had been assigned low weights. Thus, Naive Bayes appears to be
doing a good job of what Ripper and C4.5 are attempting.

Having analyzed the sources of IBP's accuracy, we may venture another
explanation of why its predictions are more accurate than the next four best-
performing programs: RL, Na've Bayes, C.4.5, and Ripper. These four
programs share an "eager" approach to learning as opposed to IBP's "lazy"
approach. In the ML literature, the difference between lazy and eager learning
is that a lazy learner may "defer the decision of how to generalize beyond the
training data until each new query instance is encountered. 97 An eager
method "generalizes beyond the training data before observing the new
query." 98 Thus, "a lazy learner has the option of (implicitly) representing the
target function" (i.e., the function, to be learned from the training instances,
that assigns a classification such as "plaintiff wins" to a new case) "by a
combination of many local approximations, whereas an eager learner must
commit at training time to a single global approximation." 99 By delaying the
representation of the target function until it can be composed of local ap-
proximations based on a particular problem's facts, the expectation is that the
learned function will be better tailored to the problem's context.

RL, C4.5, and Ripper are eager in that they induce their rules before
seeing the facts of a particular problem to which the rules will ultimately be
applied. Naive Bayes is eager in that the probabilities used are computed in
advance of knowing which particular Factors are present in a problem., ° °

IBP's generalizations are the issue-based hypotheses it generates for a
particular problem and tests against the cases returned from the database. IBP
is lazy in that it delays generalizing from the database until the facts of the
problem are known.

The ML literature's distinction between eager and lazy learning is
reflected in models of common law reasoning. Edward Levi's model of legal
reasoning with case examples, for instance, involves lazy learning; the rule for
deciding cases may change as the rule is applied to a specific problem.'0 '
Similarly, Schauer notes that common law and US constitutional law are

97. MITCHELL, supra note 67, at 244.
98. Id. at 245.
99. Id.
100. Id. at 182.
101. EDWARD LEVI, AN INTRODUCTION TO LEGAL REASONING 3,4 (1949).
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domains in which judges may change a rule as they apply it in the context of a
specific set of facts. 102

IBP's greater predictive accuracy over RL, Na'fve Bayes, C4.5, and Ripper
may be due to the increased context sensitivity its lazy learning approach
affords. However, lazy learning has to be applied carefully. The experiments
included several lazy learning approaches, HYPO-BUC, CATO-NoSignDist,
and kNN (1B I), which did not outperform the eager learners.

Although an eager method, since its rules are learned before the classifica-
tion phase, RL apparently is designed to achieve much of what lazy learning
offers. Its strategy of cover and replacement of cases, its retention of alterna-
tive rules for a training case, and its delayed, classification-phase assignment
of weights to alternative rules to resolve conflicting evidence, make it a "lazy"
implementation of an eager rule-learning approach. 3 IBP's approach to lazy
learning is unique in that its domain model supports context-sensitive reason-
ing. The Domain Model's issues focus hypothesis formulation and testing on
conflicting Factors, which helps ensure that the lazily formed hypotheses are
conceptually focused. We conjecture that this combination is the key to
explaining IBP's greater accuracy; it appears to achieve an effective balance of
lazy learning and providing rules similar to those induced by eager learners.

4. Comparing Algorithms' Explanations
Beside accuracy, the algorithms should be compared in terms of whether

and how they explain their predictions. Intuitive legal explanations may draw
analogies between a problem and past cases and give reasons why the
similarities and differences justify treating the problem similarly or differently
in terms of applicable legal rules and their underlying purposes.

Despite its relatively accurate predictions, Nayve Bayes cannot generate
intuitive legal explanations. Its outputs and weights are of limited use for
making real-world legal arguments. The information that allows it to general-
ize from past cases and the probabilities it computes do not lend themselves
readily to fashioning a rule or a qualitative argument intelligible to attorneys.
An argument like, "Your honor, my client should win because our Al system
has calculated that in this case he has a probability of 0.67 of winning," does
not relate to legal standards of argument.

The rule learning algorithms, RL, C4.5 and Ripper, do generate rules that
explain their predictions. As we have seen, however, these rules do not
necessarily correspond to the kinds of explanations that are acceptable for a
lawyer. RL's rules come closest. They usually correspond to reasonable

102. Frederick Schauer, Is the Common Law Law?, 77 CAL. L. REV. 455, 464, 470 n.41
(1989) (reviewing MELVIN A. EISENBERG, THE NATURE OF THE COMMON LAW (1988); see also
Kevin Ashley & Edwina Rissland, Law, Learning and Representation, 150 ARTIFICIAL
INTELLIGENCE 17, 19 (2003).

103. RL is one answer to Tom Mitchell's query, "Can we create eager methods that use
multiple local approximations to achieve the same effects as local methods?" MITCHELL, supra
note 67, at 245.
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intuitions about trade secret law. By contrast, Ripper's rules tend to summarize
conditions when the minority class will apply-that is, when it is most likely
that plaintiff will lose. Although this is a reasonable strategy for an ML
program, it does not correspond to the kinds of legal rules attorneys normally
invoke in justifying assertions. These learning algorithms are designed to
relate features to outcomes, not to generate an explanatory model of a domain.
As a result, their rules do not reflect knowledge of trade secret law issues nor
reasons why Factors are relevant to the issues.

While a nearest-neighbor algorithm identifies examples relevant for
making fairly accurate predictions, it cannot explain why the examples are
relevant except in terms of its similarity measure. As discussed in Part L.A, this
measure combines relevant similarities or differences in a manner that does
not relate to familiar patterns of analogical legal argument. The case- and
argument-based predictors (HYPO-BUC and CATO-NoSignDist) do a better
job. They explain predictions in terms of arguments that draw analogies
between a problem and the most similar cases in terms familiar to attorneys
(see Figure 3). Enabling programs like these to justify assertions in terms of
legal rules and their underlying purposes is a matter of on-going research.

IBP's output, shown in Figure 6, explains predictions in terms of
formulating and testing hypotheses about issues. IBP's explanations deal in
terms that are intuitively accessible by attorneys. For each issue, the program
formulates a hypothesis in terms of possibly conflicting Factors, finds cases
that support or contradict the hypothesis, attempts to explain away the
counterexamples in terms of KO-Factors that account for their outcome, and
differentiates them from the positive instances. As we have seen, a number of
the KO-Factors corresponds to the kinds of rules the induction programs
generate. There is a subtle but important difference, however. IBP uses KO-
Factors, which are defined in terms of predictive strength and semantics, to
explain away counterexamples to a predictive hypothesis. By contrast, the
inductive learners, like Ripper, apply a default if they can not find highly
predictive Factors (the KO-Factors). This approach is more alien to traditional
legal reasoning.

There may be good reasons to combine IBP's approach to prediction and
explanation with CATO's approach to argumentation. IBP achieves higher
accuracy than the CATO algorithm (91.3% vs. 77.7%), abstains less fre-
quently, and makes fewer errors. IBP breaks up cases into issues and focuses
on conflicts of issue-related Factors. CATO implements a complementary
strategy that considers a case in a more gestalt-like way. Its relevance criteria
consolidate evidence from across issues. Although the result is a lower
accuracy, sometimes CATO retrieves cases that can make normatively
reasonable arguments for a position even though it is predicted to lose.' °4 This
is useful if one represents the weaker side and needs to make a reasonable
argument in support of an apparently weaker position. In the future, we will

104. Ashley & Broninghaus, supra note 70, at 160.
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study if IBP's focus on issues can help CATO select the strongest arguments
for the weaker side. 10 5

IV. RAMIFICATIONS FOR THE FUTURE
From a practical viewpoint, if the goal of prediction research in law is to

generate predictions one "can bank on," then there is a long way to go. As
noted, relying on the predictions of any of the algorithms as configured above
for purposes of determining the actual odds of winning or losing a lawsuit is
subject to significant risks such as the incomplete and biased selection of
cases. To evaluate these risks, one would need to undertake a kind of experi-
ment we have not: field tests that assess the quality of predictions on a larger
set of diverse, real-world problems.

From a different "practical" viewpoint, however, prediction algorithms
may be seen as a means for achieving a "systematization of traditional legal
research. ' ' lt 6 From the limited set of cases that happen to be in an electronic
database, they automatically extract reasons helpful in making decisions about
a problem's outcome. The experiments can be seen as comparing algorithmic
methods for extracting such reasons. In this light, IBP fares well. It shows how
an on-line legal case database can help attorneys in an automated way to test
hypotheses about resolving problems against the data. Of course, this use of
predictions is limited, too. IBP's predictions and explanations are limited by
the variables represented and by the need to read the cases to ensure the user
agrees with the interpretations. In addition, the explanations do not refer to
statutory rules or underlying policies. All of the cases and problems, moreover,
"fit the model." Hunter distinguishes among legal domains that depend on
landmark, leading, or commonplace cases. The last are more appropriate for
computerized prediction because they tend to reflect the law rather than
reconstruct it.' 7 CATO's trade secret cases tend toward the commonplace.
They do not address other claims, the procedural setting, or such issues as
preemption under federal law. 108

105. Interestingly, the experiment reveals that the CATO prediction algorithm performs
better than HYPO-BUC. CATO's additional knowledge about the significance of Factor
distinctions enables it to select the more relevant Best Untrumped Cases on whi'ch to base its
predictions. CATO achieves an accuracy of 77.7% compared to HYPO-BUC's 67.9%. While the
CATO algorithm abstains less frequently, it makes nearly twice as many errors as HYPO-BUC.
They illustrate different tradeoffs between accuracy and coverage (i.e., mistakes and abstentions).

106. Clermont & Eisenberg, supra note 22, at 125.
107. Hunter, supra note 1, at 54-63.
108. These issues may interact with issues IBP's model does address. For instance, if a

defendant copied information fixed in a tangible medium of expression and covered by the subject
matter of copyright, a trade secret claim may be preempted under § 301 of the Copyright Act 17
U.S.C.S. § 301 (2004). A trade secret claim that involved an extra element of breach of confidence
would not be preempted, but it could be if it involved only improper means. Although IBP's
model does not address preemption, some of the same Factors (e.g., regarding confidential
relationship) would be relevant to the preemption analysis. One would need to modify the model
to add preemption.
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More generally, our focus on prediction for deliberation-that is, on
analyzing problems given the information in a case database-provides some
insights about legal reasoning. Legal prediction research facilitates identifying
variables to explain the outcomes of legal cases. Schauer, for instance,
emphasizes the possibility of using prediction research systematically to find
the right "explanatory variables" or "tendencies" or "factors" for a legal
domain. 109 Underlying his concern is the antagonism between predictability of
decision-making versus particularism or context-sensitivity. If they exist, the
explanatory variables should enable a reasoner to account for a problem's
particular circumstances in a way that balances context-sensitivity and
predictability. Schauer asks whether conceptual categories that have value in
predicting outcomes relate to legal doctrine or to other domain features;
alternately, he asks whether there are no categories with predictive value, as
legal decision-making is too "particularist" and sensitive to the specific
context of the case to be amenable to prediction." 0 "It might also be the case,"
he suggests, "that such explanatory variables filled what would otherwise be
gaps or indeterminacies in the law.""'

Factors appear to be an appropriate explanatory variable for filling "what
would otherwise be gaps or indeterminacies in the law." As used in IBP,
CATO, and HYPO, Factors occupy an intermediate level of abstraction
between raw facts of cases and legal conclusions pertaining to a claim's issues
and elements. They capture stereotypical fact patterns that strengthen or
weaken a side's argument on a claim. In assembling the list of Factors, we
have drawn on observations of judges and legal scholars who summarize the
kinds of fact situations that appear to have mattered in deciding cases involv-
ing a particular type of claim. The experiments show that Factors have utility

109. Schauer, supra note 2. Discovering explanatory variables (i.e., good predictive
categories) automatically in the databases of case texts is still far in the future, requiring much
greater facility for natural language understanding than programs currently possess. Given
preexisting lists of predictive features, ML programs can select the most predictive of them.
Conceivably, a program could also automatically tune a model like IBP's based on cases it
encounters, changing logical connections or learning to ignore certain segments that are not used
or not determinative. Recent work of Chorley and Bench-Capon, supra note 94, does something
like this in generating a theory or model of the domain based on value preferences evidenced in
the cases.

I 10. Schauer, supra note 2, at 786.
1ll. Id. at 788. Specifically, Schauer says:
Even in the application of "the best interests of the child" or the other phrases that commonly go
under the heading of "standards" rather than "rules," it might turn out upon serious empirical
investigation that there were explanatory variables that would enable people to predict the outcome
of future cases. Some of these might reflect background but nonlegal norms, such as "give custody
to the parent with the higher income" or "give custody to the mother." Others might in fact reflect
unstated legal variables. And still others might simply track convergences in human beliefs and
behavior, not necessarily easily captured by a norm in a narrow sense. But not only might [the
research] program reveal that the explanatory variables of judicial decisions-the descriptive
rules-would depart from the variables announced as explaining those decisions, but it might also
be the case that such explanatory variables filled what would otherwise be gaps or indeterminacies
in the law.

Id.
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in predicting outcomes of legal cases and provide a basic terminology for
explaining those predictions. 112 The comparative experiment illustrates that the
explanatory variables have a range of uses in prediction. Using strong
predictors in rules for directly predicting outcomes, as in C4.5 and Ripper (and
NaYve-Bayes, in effect), may not be their best use. In IBP, KO-Factors are best
used to explain away counterexamples to a hypothesis, a use that supports both
prediction and argumentation. Similarly, even though IBP's Weak Factors are
too weak to affect predictions empirically, they still have a role to play in
arguments and explanations concerning a prediction. An empirically weak
predictor may still be the basis for a normatively reasonable counter-argument.

Our research on IBP will continue in two directions. First, we have
coupled IBP with a program called SMILE that learns to identify Factors in
textual descriptions of problem scenarios. SMILE uses marked-up sentences
from the squibs of the cases in CATO's database as labeled examples. Each
squib contains a textual description of the facts of a case. For each Factor, we
manually annotated the sentence(s) in the squib from which one can directly
infer that the Factor applies to the case. We have experimented with methods
for representing the texts of the sentences to make them more effective as
training instances. For instance, we have substituted the names of parties and
products with their roles in the trade secret case: plaintiff, defendant, plain-
tiff s information, etc. We have also used an information extraction program
that carried out shallow parsing to identify patterns that capture information
related to "who did what" and "what was done to whom." To our knowledge,
the combined program, SMILE+IBP, is the first computer program that can
generate predictions and explanations of legal cases input as texts.'

Second, we plan to examine how IBP can formulate other kinds of
predictive hypotheses. IBP supports testing only hypotheses resolving
conflicts of issue-related Factors of the type where plaintiff's trade secret
misappropriation claim is- strong on certain Factors, and plaintiff should win
the issue related to those Factors even though it is weak on certain other
Factors. It would be useful to test other types of hypotheses involving
conflicting issues, statutory elements, or normative interests such as:

112. Interestingly, Ruger et al., supra note 21, at 1194, claim that the six general
characteristics used to predict outcomes of Supreme Court cases in the 2002 Term play the same
role in filling Schauer's gap. These characteristics, however, could not be used to provide a legal
explanation of the prediction.

113. See Brtlninghaus, supra note 5; Stefanie Brtlninghaus & Kevin Ashley, Generating
Legal Arguments and Predictions from Case Texts, PROCEEDINGS OF THE TENTH INTERNATIONAL
CONFERENCE ON ARTIFICIAL INTELLIGENCE AND LAW 65-74 (2005).
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* Where plaintiffs case is strong on one issue, plaintiff should win even
though it is weak on another issue (e.g., strong on Info-Misappropriated
issue but weak on Info-Trade-Secret issue; strong on the Improper-
Means issue but weak on the Maintain-Secrecy issue).

* Where defendant's legitimate interest is strong (e.g., in protecting
technical employees' freedom to use skills and change employment),
defendant should win even though the plaintiff trade secret owner's
interest is also strong (e.g., plaintiff's property interest in protecting its
return on investment from theft and diminution or its interest in
protecting expectations of confidentiality).

* Where one side's claim is strong regarding certain elements of a statute
(e.g., the UTSA), the plaintiff should win even though it is weak on
another element.

* Where a trade secret claim is strong under one model (e.g., based on the
UTSA), but weaker under another model (e.g., based on state criminal
law concerning trade secrets).

It is also a goal to test hypotheses that involve more detailed information about
why a Factor applies."

4

While enabling some of these predictive hypotheses is fairly straight-
forward, others require improvements in the case representation, Domain
Model, or in the algorithm for testing hypotheses. Testing more general
hypotheses, for instance, will require including in the Domain Model the
underlying normative interests or changing the logical connections. More
specific hypotheses will require representing more detailed information about
case facts and their connections to Factors, as represented in HYPO's Dimen-
sions.' ,5 Accounting for temporal ordering of events in cases will require an
augmented representation. We are also interested in ordering the cases in the
database temporally and determining the effects on predictions when the case
dates are taken into account, perhaps leading to the identification of legal
trends or changes over time.

This article has presented a "design space" of dimensions to consider in
building and assessing algorithms for predicting outcomes of new cases based
on a database of precedents. Prediction algorithms can be seen as a means for
extracting and presenting information from particular databases of cases to
guide analysis of new problems. Accordingly, legal prediction has practical
value despite the limitations that make reliance on predictions risky for other

114. For example, a hypothesis may involve the sufficiency of particular combinations of
security measures or the effect of temporal orderings: Is there a difference between a plaintiffs
making a public disclosure before or after the defendant breaches a confidence?

115. See ASHLEY, supra note 19. RL has the ability to learn rules involving multi-valued
attributes and attribute hierarchies, and can differentiate "known to be absent" from "not
mentioned as present." We hope to discover whether this gives RL an edge in dealing with
detailed Dimensional representations of Factors.
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real-world purposes. Prediction algorithms should be compared not only in
terms of accuracy, but also in terms of their ability to explain predictions in
terms of reasonable legal arguments. Our IBP program tests hypotheses about
how issues in a new case will be decided, attempts to explain away counterex-
amples inconsistent with a hypothesis, but also apprises users of counterexam-
pies and makes explanatory arguments based on them.
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